Respiratory syncytial virus (RSV), a member of the paramyxovirus family, is the leading cause of infant hospitalization from infectious diseases in the United States. Regular re-infection of adults during seasonal epidemics provides the ground for caregiver-to-baby transmissions, which aggravate the problem. Despite extensive research, no vaccine protection is available and current antibody therapy-based immunoprophylaxis remains reserved for high-risk patients. Recognizing the unmet pediatric clinical need for efficacious, readily applicable and cost-effective RSV therapeutics, it is the overarching goal of this proposal to apply a rigorous drug development approach to the problem and ultimately identify an anti-RSV therapeutic candidate and at least one mechanistically distinct alternative compound that are suitable for IND-enabling formal development. Narrowly focused drug discovery campaigns are at high risk of early stage failure. We hypothesize that a comprehensive anti-RSV approach interrogating the full host-pathogen interactome for pathogen-directed and host-directed drug candidates has the highest prospect of ultimately yielding viable clinical candidates. This is based on the realization that traditional pathogen-directed therapeutics enjoy an excellent clinical record but can be compromised by emerging viral resistance and/or a narrow pathogen indication spectrum, whereas host-directed antivirals promise to overcome these limitations, yet are at present predominantly still in preclinical development. Building on our multiple-year expertise in the development of myxovirus inhibitors, we have in pilot studies engineered a first in class recombinant RSV expressing a luciferase reporter and developed an innovative drug screening protocol that allows the simultaneous identification of pathogen- directed and host-directed antivirals in a single-well setting. Proof-o-concept implementation of this screen has yielded, amongst others, a novel pathogen-specific small-molecule RSV entry inhibitor with exquisite toxicity profile and an innovative host-directed agonist class of cellular antiviral defense pathways. Lead compounds of both series show nanomolar inhibitory activity against pathogenic RSV variants. To maximize the prospect of success of this program and meet the clinical demand for effective RSV therapy, we will diversify the portfolio of anti-RSV candidates by implementing a full-scale drug screening campaign based on the newly established protocol (aim 1). In parallel, the existing leads and, as discovery advances, novel anti-RSV candidates will be mechanistically characterized and their molecular targets identified (aim 2). Candidates with high developmental potential will be subjected to hit-to-lead synthetic optimization guided by in vitro potency, ADME parameters and small-animal pharmacokinetics profiles (aim 3). The efficacy of lead candidates in alleviating key features of RSV bronchiolitis, airway damage, high lung viral load, mucus expression, and pulmonary obstruction, will be assessed in a newly established clinically relevant mouse model of RSV infection (aim 4).

Public Health Relevance

Respiratory syncytial virus infections are the leading cause of infant hospitalization from infectious diseases in the United States, and result in major human morbidity and mortality globally in particular among infants, the elderly, and the immunocompromised. Lack of effective vaccines and small-molecule RSV therapeutics generate high clinical need for the development of innovative therapeutic countermeasures to control RSV spread and improve disease management. Building on an established antiviral program, this project will combine the preclinical development of newly identified lead RSV inhibitors with the diversification of the inhibitor candidate pool through an independent drug screening campaign to ultimately improve public health through novel, applicable RSV therapeutics.

National Institute of Health (NIH)
Eunice Kennedy Shriver National Institute of Child Health & Human Development (NICHD)
Research Project (R01)
Project #
Application #
Study Section
Special Emphasis Panel (ZRG1)
Program Officer
Ren, Zhaoxia
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Georgia State University
Schools of Arts and Sciences
United States
Zip Code
Weisshaar, Marco; Cox, Robert; Morehouse, Zachary et al. (2016) Identification and Characterization of Influenza Virus Entry Inhibitors through Dual Myxovirus High-Throughput Screening. J Virol 90:7368-87
Sourimant, Julien; Plemper, Richard K (2016) Organization, Function, and Therapeutic Targeting of the Morbillivirus RNA-Dependent RNA Polymerase Complex. Viruses 8:
Cox, Robert; Plemper, Richard K (2016) Structure-guided design of small-molecule therapeutics against RSV disease. Expert Opin Drug Discov :1-14
Weisshaar, Marco; Cox, Robert; Plemper, Richard K (2015) Blocking Respiratory Syncytial Virus Entry: A Story with Twists. DNA Cell Biol 34:505-10
Yan, Dan; Weisshaar, Marco; Lamb, Kristen et al. (2015) Replication-Competent Influenza Virus and Respiratory Syncytial Virus Luciferase Reporter Strains Engineered for Co-Infections Identify Antiviral Compounds in Combination Screens. Biochemistry 54:5589-604
Chung, Hokyung K; Jacobs, Conor L; Huo, Yunwen et al. (2015) Tunable and reversible drug control of protein production via a self-excising degron. Nat Chem Biol 11:713-20
Hotard, Anne L; Lee, Sujin; Currier, Michael G et al. (2015) Identification of residues in the human respiratory syncytial virus fusion protein that modulate fusion activity and pathogenesis. J Virol 89:512-22
Lee, Yu-Na; Hwang, Hye Suk; Kim, Min-Chul et al. (2015) Recombinant influenza virus carrying the conserved domain of respiratory syncytial virus (RSV) G protein confers protection against RSV without inflammatory disease. Virology 476:217-25
Cox, Robert; Plemper, Richard K (2015) The paramyxovirus polymerase complex as a target for next-generation anti-paramyxovirus therapeutics. Front Microbiol 6:459
Matharu, Daljit S; Flaherty, Daniel P; Simpson, Denise S et al. (2014) Optimization of potent and selective quinazolinediones: inhibitors of respiratory syncytial virus that block RNA-dependent RNA-polymerase complex activity. J Med Chem 57:10314-28

Showing the most recent 10 out of 11 publications