It is proposed to investigate the details and significance of a newly detected conformational signal from hemoglobin. The signal is the emission of the tryptophyl residues, quenched by energy transfer to the heme. It is detectible by measuring the lifetimes of the emission of the tryptophans on the picosecond time-scale. The signal is ligand sensitive, however this cannot be explained by modifications of the electronic spectra of the hemes upon ligand binding. Therefore, it appears to reflect only the quenching produced by the relative positions of the tryptophyl residues and the heme in the molecule, and it offers a means for following modifications of the relative positions of heme and tryptophans (here defined as heme """"""""conformation"""""""") in the molecule. The signal may reflect only local conformational dynamics of the tryptophans and of the heme, or it may be a conformational marker for the T and R states of hemoglobin. The local effects will be explored by observing: 1) The influence on this signal of the Beta37 tryptophan (at the alphal Beta2 interface) will be investigated in hemoglobin Rotschild (Beta37 Trp- greater than arg) and Hirose (Beta37 Trp- greater than Ser). 2) The influence of the chemical structure of the heme will be approached utilizing hemoglobins where the natural heme has been substituted with deutero-, meso- and spyrographis- heme. The influence of the metal atom will be investigated using mangano-, zinc-, and cobalt- hemoglobins. The possibility that it is a marker for the R and T states will be investigated by: 3) Protein dynamics simulations, which will explore the details of the energy transfer between heme and tryptophans as due to the relative positions and motions of the residues, in the presence and absence of ligands. 4) Measuring the signal in """"""""frozen"""""""" hemoglobin systems, where the allosteric properties have been eliminated, as, for example, in CPA digested hemoglobins. 5) Testing the influence of the alpha-beta interaction in the isolated subunits of normal hemoglobin, of the mutant hemoglobin Rotschild and Hirose, and of heme substituted hemoglobins. 6) Titrating the signal in solutions of hemoglobin progressively saturated with ligands and in hybrid molecules (e.g. iron-cobalt hemoglobin hybrids) where only one kind of subunit can combine with ligands.

Agency
National Institute of Health (NIH)
Institute
National Heart, Lung, and Blood Institute (NHLBI)
Type
Research Project (R01)
Project #
5R01HL013164-20
Application #
3334591
Study Section
Molecular and Cellular Biophysics Study Section (BBCA)
Project Start
1977-04-01
Project End
1994-03-01
Budget Start
1992-04-01
Budget End
1993-03-31
Support Year
20
Fiscal Year
1992
Total Cost
Indirect Cost
Name
University of Maryland Baltimore
Department
Type
Schools of Medicine
DUNS #
003255213
City
Baltimore
State
MD
Country
United States
Zip Code
21201
Thomas, M; Matheson-Urbaitis, B; Kwansa, H et al. (1997) Introduction of negative charges to a crosslinked hemoglobin: lack of effect on plasma half time. Artif Cells Blood Substit Immobil Biotechnol 25:309-14
Bucci, E; Razynska, A; Kwansa, H et al. (1996) Production and characteristics of an infusible oxygen-carrying fluid based on hemoglobin intramolecularly cross-linked with sebacic acid. J Lab Clin Med 128:146-53
Bucci, E; Razynska, A; Kwansa, H et al. (1996) Positive and negative cooperativities at subsequent steps of oxygenation regulate the allosteric behavior of multistate sebacylhemoglobin. Biochemistry 35:3418-25
Razynska, A; Matheson-Urbaitis, B; Fronticelli, C et al. (1996) Stabilization of the tetrameric structure of human and bovine hemoglobins by pseudocrosslinking with muconic acid. Arch Biochem Biophys 326:119-25
Matheson-Urbaitis, B; Lu, Y S; Fronticelli, C et al. (1995) Renal and systemic-hemodynamic response to isovolemic exchange transfusion with hemoglobin cross-linked with bis (3,5-dibromosalicyl) fumarate or albumin. J Lab Clin Med 126:250-60
Fronticelli, C; Gattoni, M; Lu, A L et al. (1994) The dimer-tetramer equilibrium of recombinant hemoglobins. Stabilization of the alpha 1 beta 2 interface by the mutation beta(Cys112-->Gly) at the alpha 1 beta 1 interface. Biophys Chem 51:53-7
Fronticelli, C; Pechik, I; Brinigar, W S et al. (1994) Chloride ion independence of the Bohr effect in a mutant human hemoglobin beta (V1M+H2deleted). J Biol Chem 269:23965-9
Fronticelli, C; Brinigar, W S; Olson, J S et al. (1993) Recombinant human hemoglobin: modification of the polarity of the beta-heme pocket by a valine67(E11)-->threonine mutation. Biochemistry 32:1235-42
Gryczynski, Z; Fronticelli, C; Tenenholz, T et al. (1993) Effect of disordered hemes on energy transfer rates between tryptophans and heme in myoglobin. Biophys J 65:1951-8
Gryczynski, Z; Bucci, E; Kuyyba, J (1993) Linear dichroism study of metalloporphyrin transition moments in view of radiationless interactions with tryptophan in hemoproteins. Photochem Photobiol 58:492-8

Showing the most recent 10 out of 37 publications