The overall aim of this research is to investigate the role of the circulating hormones known as Natriuretic Peptides (NPs) as endogenous anti-inflammatory agents that reduce vascular hyperpermeability in intact microvessels and tissues that have been exposed to inflammation. Previous investigations of the role of NPs to modify vascular permeability in intact tissues and whole animals focused on physiological functions of NPs that increase vascular permeability and control vascular volume in normal (non-inflamed) conditions. We will test the idea that action of NPs to increase or decrease vascular permeability depends on the endothelial phenotype. Key observations from our laboratory are that the difference between conditions where NPs reduce permeability and conditions where NPs increase permeability is the presence or absence of upregulated contractile mechanisms in endothelial cells. For example, most investigations showing that NPs reduce permeability are in cultured endothelial monolayers. In these monolayers the inflammatory mediator thrombin is a robust activator of contractile mechanisms and NPs reduce the thrombin induced contractile force and attenuate the formation of large paracellular gaps. On the other hand, microvessels where NPs increase permeability do not respond to thrombin and permeability is low because strong adhesion forces maintain tight intercellular junctions. We propose experiments to induce the contractile phenotype in microvessels and tissues, which initially express the strong adhesion phenotype, by exposing them to inflammatory conditions. We will then use the expertise of our laboratory to study the regulation of vascular permeability at the cellular, single vessel, and whole organ levels. We will use the results from experiments in cultured endothelial monolayers to guide the design and interpretation of these investigations. The overall hypothesis is that the action of NPs to regulate vascular permeability depends on the endothelial phenotype. The phenotype determines activity of cGMP dependent phosphodiesterases to modulate endothelial cAMP and cGMP levels and the activity of their downstream effectors to modify both cell-cell adhesion and contractile mechanisms.
Specific Aim 1 tests the hypothesis that NPs attenuate increased permeability only when contractile mechanisms are up-regulated in microvessels.
Specific Aim 2 tests the hypothesis that cellular mechanisms investigated in cultured endothelial cells regulate NP dependent decreases of vascular hyperpermeability.
Specific Aim 3 tests the hypothesis that NPs attenuation of contractile mechanisms is sufficient to reduce hyperpermeability and accelerate wound healing in a new mouse skin wound model. At the completion of these Specific Aims we expect to provide the first systematic evaluation of NP actions to reduce hyperpermeability in intact tissue exposed to inflammation. This provides new knowledge of the different mechanisms modulating vascular permeability in intact tissue, and is a step towards better knowledge of the conditions where NPs may improve clinical outcomes by their action to attenuate hyperpermeability.

Public Health Relevance

Natriuretic peptides are normally present at very low levels in the circulating plasma and are part of physiological systems that control plasma volume. During diseases such as heart failure and sepsis, circulating levels of natriuretic peptides increase and are used as biomarkers of the severity of disease. On the other hand natriuretic peptides may also be infused after myocardial infarction to improve outcomes. We will investigate the idea that under conditions of inflammation and tissue injury, natriuretic peptides act on endothelial cells that express a pro-inflammatory phenotype to limit increases in vascular permeability that would otherwise compromise organ function, but still allow active immune responses. Understanding this fine tuning of hyperpermeability by natriuretic peptides may improve the management of disease states with elevated natriuretic peptides.

National Institute of Health (NIH)
Research Project (R01)
Project #
Application #
Study Section
Hypertension and Microcirculation Study Section (HM)
Program Officer
Charette, Marc F
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of California Davis
Schools of Medicine
United States
Zip Code
Adamson, R H; Clark, J F; Radeva, M et al. (2014) Albumin modulates S1P delivery from red blood cells in perfused microvessels: mechanism of the protein effect. Am J Physiol Heart Circ Physiol 306:H1011-7
Zeng, Ye; Adamson, Roger H; Curry, Fitz-Roy E et al. (2014) Sphingosine-1-phosphate protects endothelial glycocalyx by inhibiting syndecan-1 shedding. Am J Physiol Heart Circ Physiol 306:H363-72
Tarbell, John M; Simon, Scott I; Curry, Fitz-Roy E (2014) Mechanosensing at the vascular interface. Annu Rev Biomed Eng 16:505-32
Curry, F-R E; Adamson, R H (2013) Tonic regulation of vascular permeability. Acta Physiol (Oxf) 207:628-49
Lin, Yueh-Chen; Samardzic, Haris; Adamson, Roger H et al. (2011) Phosphodiesterase 4 inhibition attenuates atrial natriuretic peptide-induced vascular hyperpermeability and loss of plasma volume. J Physiol 589:341-53
Adamson, Roger H; Sarai, Rupinder K; Altangerel, Ariungerel et al. (2010) Sphingosine-1-phosphate modulation of basal permeability and acute inflammatory responses in rat venular microvessels. Cardiovasc Res 88:344-51
Curry, Fitz-Roy E; Adamson, Roger H (2010) Vascular permeability modulation at the cell, microvessel, or whole organ level: towards closing gaps in our knowledge. Cardiovasc Res 87:218-29
Curry, Fitz-Roy E; Rygh, Cecilie Brekke; Karlsen, Tine et al. (2010) Atrial natriuretic peptide modulation of albumin clearance and contrast agent permeability in mouse skeletal muscle and skin: role in regulation of plasma volume. J Physiol 588:325-39
Kim, Min-Ho; Curry, Fitz-Roy E; Simon, Scott I (2009) Dynamics of neutrophil extravasation and vascular permeability are uncoupled during aseptic cutaneous wounding. Am J Physiol Cell Physiol 296:C848-56
Adamson, Roger H; Curry, Fitz-Roy E (2009) Rapid calcium-dependent reduction of intraendothelial cAMP: a trigger to increase vascular permeability? J Physiol 587:3975

Showing the most recent 10 out of 58 publications