Diabetes is associated with changes in vascular permeability and vasomotor control as well as with increased morbidity and mortality after surgical procedures. This is especially true after heart operations involving cardiopulmonary bypass (CPB). Recently, we have demonstrated that permeability-modulating proteins such as vascular endothelial growth factor /vascular permeability factor (VEGF/VPF) are increased in expression in diabetes and are associated with increased edema formation and length of hospital stay in diabetic patients. Since alterations in vasomotor regulation are critical aspects of morbidity of CPB, a better understanding of the regulation of the microvasculature of diabetic patients may lead to improved outcomes in diabetic patients. The goal of the proposed research is to determine the effect of well-controlled and poorly controlled diabetes mellitus on alterations in signal transduction associated with vascular function and to investigate the changes that occur in patients undergoing heart surgery. Specifically, we will determine the roles of tyrosyl kinase / phosphatase activities, protein tyrosyl phosphorylation, mitogen activated protein kinase (MAPK), and expression of inducible cyclooxygenase (COX-2) in mediating acute changes systemic microvascular reactivity and permeability during clinical cardiac surgery. Protein phosphorylation plays a critical role in numerous vascular processes including vasomotor regulation and the regulation of vascular permeability mediated through adherens junctions and other endothelial cell-cell contacts. In addition, agonist induced microvascular smooth muscle responses to serotonin, endothelin-1 and thromboxane A2 will be examined after cardioplegia in the coronary microcirculation in well controlled, poorly controlled diabetic patients and age-matched non- diabetic patients. Recently, poly(ADP-ribose) polymerase (PARP) has been demonstrated to cause endothelial dysfunction and other vascular injury in diabetic patients. Thus, we will examine the changes in nitrosative stress, PARP activation and apoptosis inducing factor (AIF) translocation after CPB in vessels obtained from diabetic patients, and age-matched non-diabetic patients. This work will be accomplished through an exhaustive approach using molecular and cellular biology techniques to examine the protein phosphorylation and gene expressions involved in maintaining vascular integrity in clinical cardiac surgery involving cardioplegia and CPB. Importantly, we will use cDNA microarray technology and standard molecular and cellular techniques to examine upregulated and downregulated genes and enzymes in diabetic patients and correlate the molecular and cellular changes with clinical outcomes and in vitro indices of vascular alterations. The results of these studies may have significant implications regarding the recovery of diabetic and other patients after cardiac surgery involving cardioplegia and CPB.

Public Health Relevance

Diabetic patients have increased complications after surgical procedures involving cardiopulmonary bypass (CPB) or extracorporeal circulation. Among diabetic complications, edema formation (blood vessel are more leaky, more permeable to plasma) and length of hospital stay and alterations in coronary blood flow regulation (heart blood flow) are critical aspects of morbidity of CPB. A better understanding of the regulation of the microvasculature (flow and permeability) of diabetic patients may lead to improved outcomes in diabetic patients. The goal of the proposed research is to determine the effect of well-controlled and poorly controlled diabetes mellitus on alterations in vascular function and to investigate the changes that occur in patients undergoing heart surgery. We will use molecular and cellular biology techniques and correlate those findings with clinical outcomes.

Agency
National Institute of Health (NIH)
Institute
National Heart, Lung, and Blood Institute (NHLBI)
Type
Research Project (R01)
Project #
5R01HL046716-21
Application #
8473086
Study Section
Bioengineering, Technology and Surgical Sciences Study Section (BTSS)
Program Officer
Schwartz, Lisa
Project Start
1992-08-01
Project End
2014-05-31
Budget Start
2013-06-01
Budget End
2014-05-31
Support Year
21
Fiscal Year
2013
Total Cost
$364,033
Indirect Cost
$128,413
Name
Rhode Island Hospital
Department
Type
DUNS #
075710996
City
Providence
State
RI
Country
United States
Zip Code
02903
Sellke, Nicholas; Kuczmarski, Alex; Lawandy, Isabella et al. (2018) Enhanced coronary arteriolar contraction to vasopressin in patients with diabetes after cardiac surgery. J Thorac Cardiovasc Surg 156:2098-2107
Potz, Brittany A; Scrimgeour, Laura A; Sabe, Sharif A et al. (2018) Glycogen synthase kinase 3? inhibition reduces mitochondrial oxidative stress in chronic myocardial ischemia. J Thorac Cardiovasc Surg 155:2492-2503
Aldosari, Sarah; Awad, Maan; Harrington, Elizabeth O et al. (2018) Subcellular Reactive Oxygen Species (ROS) in Cardiovascular Pathophysiology. Antioxidants (Basel) 7:
Liu, Yuhong; Cole, Victoria; Lawandy, Isabella et al. (2018) Decreased coronary arteriolar response to KCa channel opener after cardioplegic arrest in diabetic patients. Mol Cell Biochem 445:187-194
Sellke, Nicholas; Gordon, Caroline; Lawandy, Isabella et al. (2018) Impaired coronary contraction to phenylephrine after cardioplegic arrest in diabetic patients. J Surg Res 230:80-86
Sabe, Sharif A; Feng, Jun; Liu, Yuhong et al. (2018) Decreased contractile response of peripheral arterioles to serotonin after CPB in patients with diabetes. Surgery 164:288-293
Smits, Nicole C; Kobayashi, Takashi; Srivastava, Pratyaksh K et al. (2017) HS3ST1 genotype regulates antithrombin's inflammomodulatory tone and associates with atherosclerosis. Matrix Biol 63:69-90
Potz, Brittany A; Sabe, Ashraf A; Elmadhun, Nassrene Y et al. (2017) Calpain inhibition modulates glycogen synthase kinase 3? pathways in ischemic myocardium: A proteomic and mechanistic analysis. J Thorac Cardiovasc Surg 153:342-357
Potz, Brittany A; Sabe, Ashraf A; Elmadhun, Nassrene Y et al. (2017) Calpain inhibition decreases inflammatory protein expression in vessel walls in a model of chronic myocardial ischemia. Surgery 161:1394-1404
Feng, Jun; Anderson, Kelsey; Singh, Arun K et al. (2017) Diabetes Upregulation of Cyclooxygenase 2 Contributes to Altered Coronary Reactivity After Cardiac Surgery. Ann Thorac Surg 104:568-576

Showing the most recent 10 out of 148 publications