Atherosclerotic cardiovascular disease (CVD) is the most common cause of mortality and morbidity in the Western world. Cholesterol accumulation in arterial macrophages and inflammation of the artery wall both contribute to development of CVD. There is an inverse relationship between plasma high-density (HDL) levels and cardiovascular risk, implying that factors associated with HDL metabolism are cardioprotective. HDL protects against CVD by several mechanisms that remove cholesterol from arterial cells and suppress inflammation. A major cardioprotective factor associated with HDL metabolism is ATP-binding cassette transporter A1 (ABCA1), a cell membrane protein that exports cholesterol and phospholipids from cells to lipid-depleted HDL apolipoproteins, such as apoA-I. We found that ABCA1 also functions as an anti-inflammatory signaling receptor through activation of a JAK2/STAT3 pathway, which is independent of cholesterol export activity. Thus, macrophage ABCA1 provides a direct biochemical link between the cardioprotective effects of reverse cholesterol transport and suppressed inflammation. These observations indicate that ABCA1 is an attractive therapeutic target for treating the two major underlying mechanisms that cause CVD. The goal of this project is to determine the cellular processes involved in the cholesterol export and anti-inflammatory activities of ABCA1 and to assess their cardioprotective roles in vivo. We propose to use mutagenesis, biochemical, and mass spectrometric techniques to evaluate the effects of apolipoprotein-ABCA1 interactions on cholesterol export and inflammatory cytokine production and to characterize cellular mechanisms involved. We also propose to use atherosclerosis-susceptible mouse models to determine how these anti-inflammatory and cholesterol export functions of ABCA1 contribute to atherosclerosis in whole animals. This information will define possible sites of impairment of these pathways that may be clinically relevant and uncover potential targets for therapeutic interventions for preventing CVD.

Public Health Relevance

HDL protects against heart disease by removing artery-blocking cholesterol from arterial cells and inhibiting inflammation. A cell protein called ABCA1 can perform both of these heart-protecting functions. This research will investigate the cell pathways involved in the cholesterol removal and anti-inflammatory actions of ABCA1 and determine if these pathways protect against heart disease in animals.

National Institute of Health (NIH)
National Heart, Lung, and Blood Institute (NHLBI)
Research Project (R01)
Project #
Application #
Study Section
Atherosclerosis and Inflammation of the Cardiovascular System Study Section (AICS)
Program Officer
Liu, Lijuan
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of Washington
Internal Medicine/Medicine
Schools of Medicine
United States
Zip Code
Spiezio, Sabrina H; Amon, Lynn M; McMillen, Timothy S et al. (2014) Genetic determinants of atherosclerosis, obesity, and energy balance in consomic mice. Mamm Genome 25:549-63
Lee, Jung-Ting; Pamir, Nathalie; Liu, Ning-Chun et al. (2014) Macrophage metalloelastase (MMP12) regulates adipose tissue expansion, insulin sensitivity, and expression of inducible nitric oxide synthase. Endocrinology 155:3409-20
Cheng, Andrew M; Handa, Priya; Tateya, Sanshiro et al. (2012) Apolipoprotein A-I attenuates palmitate-mediated NF-*B activation by reducing Toll-like receptor-4 recruitment into lipid rafts. PLoS One 7:e33917
Liu, Yuhua; Tang, Chongren (2012) Regulation of ABCA1 functions by signaling pathways. Biochim Biophys Acta 1821:522-9
Edgel, Kimberly A; Leboeuf, Renee C; Oram, John F (2010) Tumor necrosis factor-alpha and lymphotoxin-alpha increase macrophage ABCA1 by gene expression and protein stabilization via different receptors. Atherosclerosis 209:387-92
Shao, Baohai; Tang, Chongren; Heinecke, Jay W et al. (2010) Oxidation of apolipoprotein A-I by myeloperoxidase impairs the initial interactions with ABCA1 required for signaling and cholesterol export. J Lipid Res 51:1849-58
Tang, Chongren; Kanter, Jenny E; Bornfeldt, Karin E et al. (2010) Diabetes reduces the cholesterol exporter ABCA1 in mouse macrophages and kidneys. J Lipid Res 51:1719-28
Vaughan, Ashley M; Tang, Chongren; Oram, John F (2009) ABCA1 mutants reveal an interdependency between lipid export function, apoA-I binding activity, and Janus kinase 2 activation. J Lipid Res 50:285-92
Tang, Chongren; Liu, Yuhua; Kessler, Peter S et al. (2009) The macrophage cholesterol exporter ABCA1 functions as an anti-inflammatory receptor. J Biol Chem 284:32336-43
Zhang, Guoqiang; Kernan, Kelly A; Thomas, Alison et al. (2009) A novel signaling pathway: fibroblast nicotinic receptor alpha1 binds urokinase and promotes renal fibrosis. J Biol Chem 284:29050-64

Showing the most recent 10 out of 50 publications