Left ventricular (LV) remodeling and hypertrophy occurs frequently in the general population and is a strong predictor of myocardial infarction, heart failure, and stroke. Data previously collected in the HyperGEN and GENOA studies of the Family Blood Pressure Program (FBPP) have pointed to genetic loci contributing to LV hypertrophy and dimensional traits through linkage studies and genome-wide association studies. Despite these advances, a large portion of variation in LV traits is unaccounted for. We hypothesize that, in part, rare variants account for this variation. We propose the following aims.
Aim 1. Whole exome sequence (WES) 1,200 AA unrelated hypertensives with extreme values for echocardiographic LV mass/hgt2.7 to identify rare and low-frequency variants contributing to LV mass and related structural and functional phenotypes. We will select unrelated individuals from the top and bottom quartile of LV mass index. Because the distribution of LV mass/hgt2.7 in the FBPP is shifted to higher values than the general population, the cutpoint for the upper quartile is approximately equal to the definition of LVH. We will sequence at a density sufficient to capture rare variants. We will conduct extreme phenotype-based analysis, weighted by function and conservation, to identify high-impact coding variants. A gene list will be ranked for selection in Aim 2 based on evidence from statistical and bioinformatic analyses and expression experiments in induced pluripotent stem cell- (iPSC-)derived cardiomyocytes.
Aim 2. Validate variants detected in Aim 1 by resequencing 40 candidate genes in all AA HyperGEN/GENOA family members, and subsequently validate 768 most significant variants in external cohorts. We will sequence all exons and regulatory regions in the remainder of the FBPP families and siblings not sequenced in Aim 1 (n=2,266). We will conduct association analysis followed by bioinformatic filtering to identify high-impact coding variants and rank the 768 most significant variants for further external replication. We will genotype these in 9,160 AA (5,623 hypertensive) participants from population-based studies using Illumina assays (ie, JHS, CARDIA, ARIC, CHS, WUSTL). Gene-based associations will be examined within and meta-analyzed among cohorts. Genes will be ranked by statistical and biological evidence to move to Aim 3.
Aim 3. Use human iPSC cardiomyocytes to functionally validate variants replicated in Aim 2. Using hypertrophy-induced cardiomyocytes, we will test the direction of effect and clinical characterization of associated genes with rare variants from Aim 2. We will use siRNA transfections to test whether knock down of candidate genes influences hypertrophy in the cell-based model. The research proposed herein, if successful, will continue the success of HyperGEN and GENOA in identifying novel genes contributing to LV hypertrophy, and evaluate their relevance in a cell-based system to identify new pathways for future treatment.

Public Health Relevance

Black people tend to have an enlarged left ventricle (the heart chamber that pumps oxygenated blood throughout the body) more commonly than those in other race groups, putting them at greater risk for having potentially fatal cardiovascular diseases. Enlarged left ventricles are caused, at least in part, by a person's genes. This study seeks to discover which genetic factors may cause an enlarged heart;this may ultimately lead to new diagnoses and treatments to help lower cardiovascular disease risk in blacks.

National Institute of Health (NIH)
National Heart, Lung, and Blood Institute (NHLBI)
Research Project (R01)
Project #
Application #
Study Section
Special Emphasis Panel (ZRG1-PSE-H (02))
Program Officer
Jaquish, Cashell E
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of Alabama Birmingham
Public Health & Prev Medicine
Schools of Public Health
United States
Zip Code
Glasser, Stephen P; Lynch, Amy I; Devereux, Richard B et al. (2014) Hemodynamic and echocardiographic profiles in African American compared with White offspring of hypertensive parents: the HyperGEN study. Am J Hypertens 27:21-6
Simino, Jeannette; Kume, Rezart; Kraja, Aldi T et al. (2014) Linkage analysis incorporating gene-age interactions identifies seven novel lipid loci: the Family Blood Pressure Program. Atherosclerosis 235:84-93
Sung, Yun Ju; Schwander, Karen; Arnett, Donna K et al. (2014) An empirical comparison of meta-analysis and mega-analysis of individual participant data for identifying gene-environment interactions. Genet Epidemiol 38:369-78
Monda, Keri L; Chen, Gary K; Taylor, Kira C et al. (2013) A meta-analysis identifies new loci associated with body mass index in individuals of African ancestry. Nat Genet 45:690-6
Liu, Ching-Ti; Monda, Keri L; Taylor, Kira C et al. (2013) Genome-wide association of body fat distribution in African ancestry populations suggests new loci. PLoS Genet 9:e1003681
de Simone, G; Arnett, D K; Chinali, M et al. (2013) Partial normalization of components of metabolic syndrome does not influence prevalent echocardiographic abnormalities: the HyperGEN study. Nutr Metab Cardiovasc Dis 23:38-45
Rao, Madhumathi; Mottl, Amy K; Cole, Shelley A et al. (2012) Meta-analysis of genome-wide linkage scans for renal function traits. Nephrol Dial Transplant 27:647-56
Basson, Jacob; Simino, Jeannette; Rao, D C (2012) Between candidate genes and whole genomes: time for alternative approaches in blood pressure genetics. Curr Hypertens Rep 14:46-61
Irvin, Marguerite R; Wineinger, Nathan E; Rice, Treva K et al. (2011) Genome-wide detection of allele specific copy number variation associated with insulin resistance in African Americans from the HyperGEN study. PLoS One 6:e24052
Simino, Jeannette; Shi, Gang; Arnett, Donna et al. (2011) Variants on chromosome 6p22.3 associated with blood pressure in the HyperGEN study: follow-up of FBPP quantitative trait loci. Am J Hypertens 24:1227-33

Showing the most recent 10 out of 56 publications