Arrhythmias remain a major cause of morbidity and mortality. Brugada syndrome is a rare, autosomal dominant, male predominant form of idiopathic ventricular fibrillation characterized by a right bundle branch block pattern and ST elevation in the right precordial leads of the surface EKG. The only effective treatment is an implantable cardioverter-defibrillator. Mutations of the cardiac Na+ channel SCN5A cause some cases of Brugada syndrome. Most SCN5A mutations decrease inward Na+ current, and Na+ channel blockers enhance the EKG phenotype. Mutations in other genes have not been reported, and it isn't clear whether the malignancy of arrhythmias and/or the efficacy of drug testing depend on the gene defect. The reason for male predominance is also unknown. During the initial period of this project, we identified a large multigenerational family with Brugada syndrome characterized by progressive conduction disease, age- and sex-dependent penetrance, minimal response to the Na+ channel blocker procainamide, and a low frequency of ventricular arrhythmias or sudden death. Linkage was present to an approximately4 cM region on chromosome 3p22-24 (max LOD score = 4.0) and SCN5A was excluded (LOD score < -2). More recently, we identified two other large families and several small families with Brugada syndrome or arrhythmogenic right ventricular dysplasia (ARVD). Two of the small families have mutations in SCN5A, while one of the large Brugada families does not link to SCN5A or to the new chromosome 3 locus. In this competing renewal, we will test the hypothesis that Brugada syndrome results from mutations in genes other than SCN5A that decrease the cardiac Na+ current in a gender-dependent manner, through the use of refined phenotyping, fine mapping, and candidate gene approaches. We will 1) clone the gene on chromosome 3p22-24 that causes the Brugada syndrome; 2) identify novel loci, genes, and mutations responsible for Brugada syndrome and ARVD in other families, and 3) probe the molecular basis of the gender differences in disease penetrance using a rabbit model.

Agency
National Institute of Health (NIH)
Institute
National Heart, Lung, and Blood Institute (NHLBI)
Type
Research Project (R01)
Project #
2R01HL062300-04A1
Application #
6688052
Study Section
Cardiovascular and Pulmonary Research A Study Section (CVA)
Program Officer
Wang, Lan-Hsiang
Project Start
1999-04-01
Project End
2006-06-30
Budget Start
2003-07-01
Budget End
2004-06-30
Support Year
4
Fiscal Year
2003
Total Cost
$288,258
Indirect Cost
Name
University of Pittsburgh
Department
Internal Medicine/Medicine
Type
Schools of Medicine
DUNS #
004514360
City
Pittsburgh
State
PA
Country
United States
Zip Code
15213
Refaat, Marwan M; Tanaka, Toshikazu; Kormos, Robert L et al. (2012) Survival benefit of implantable cardioverter-defibrillators in left ventricular assist device-supported heart failure patients. J Card Fail 18:140-5
Frangiskakis, J Michael; London, Barry (2010) Targeting device therapy: genomics of sudden death. Heart Fail Clin 6:93-100
Shusterman, Vladimir; McTiernan, Charles F; Goldberg, Anna et al. (2010) Adrenergic stimulation promotes T-wave alternans and arrhythmia inducibility in a TNF-alpha genetic mouse model of congestive heart failure. Am J Physiol Heart Circ Physiol 298:H440-50
Shusterman, Vladimir; Lampert, Rachel; London, Barry (2009) The many faces of repolarization instability: which one is prognostic? J Electrocardiol 42:511-6
Liu, Man; Sanyal, Shamarendra; Gao, Ge et al. (2009) Cardiac Na+ current regulation by pyridine nucleotides. Circ Res 105:737-45
Pfahnl, Arnold E; Viswanathan, Prakash C; Weiss, Raul et al. (2007) A sodium channel pore mutation causing Brugada syndrome. Heart Rhythm 4:46-53
London, Barry; Michalec, Michael; Mehdi, Haider et al. (2007) Mutation in glycerol-3-phosphate dehydrogenase 1 like gene (GPD1-L) decreases cardiac Na+ current and causes inherited arrhythmias. Circulation 116:2260-8
Bedi, Maninder; McNamara, Dennis; London, Barry et al. (2006) Genetic susceptibility to atrial fibrillation in patients with congestive heart failure. Heart Rhythm 3:808-12
London, Barry (2006) CaM kinase inhibition: apply directly to the heart? Circ Res 99:1027-8
McNamara, Dennis M; Holubkov, Richard; Postava, Lisa et al. (2004) Pharmacogenetic interactions between angiotensin-converting enzyme inhibitor therapy and the angiotensin-converting enzyme deletion polymorphism in patients with congestive heart failure. J Am Coll Cardiol 44:2019-26

Showing the most recent 10 out of 15 publications