Sudden cardiac death due to sustained ventricular arrhythmias continues to be a major health care problem. Abnormal intracellular Ca cycling has been implicated in the pathogenesis of heart diseases including congenital and acquired cardiac arrhythmias. However the specific mechanisms linking abnormal Ca handling and arrhythmogenesis remain to be elucidated. On a beat-to-beat basis, intracellular Ca release through sarcoplasmic reticulum (SR) cardiac ryanodine receptor (RyR2) channels is elicited by Ca entry through sarcolemmal voltage-gated Ca channels, a process known as Ca-induced Ca release (CICR). After activation, CICR robustly terminates due to RyR2 closure and enters a period of refractoriness during which no Ca release can be triggered. This restraining process, whose mechanistic basis has yet to be clearly defined, ensures that a substantial Ca reserve is maintained in the SR and prevents RyR2s from untimely opening during diastole. The central concept of this proposal is that genetic and acquired defects in components of the RyR2 channel are linked to a broad range of arrhythmias, encompassing catecholaminergic polymorphic ventricular tachycardia (CPVT) and post-infarction sudden cardiac death, which are associated with dysregulated SR Ca release and abnormal electrical activity. The basic pathophysiology of these arrhythmias hinges on the loss of Ca signaling stability, due to the failure of RyR2 channels to deactivate and to become appropriately refractory. A comprehensive research plan is proposed to define the fundamental processes that govern RyR2 behavior during the cardiac cycle, and how genetic and acquired defects in components of the RyR2 complex result in arrhythmogenic alterations in SR Ca release.
The specific aims are to: 1) Define the mechanisms and molecular determinants of cardiac SR Ca release termination and refractoriness with a specific focus on the regulatory roles of intra-store Ca and the SR protein calsequestrin (CASQ2);2) Define the molecular and sub-cellular determinants of CPVT linked to mutations in CASQ2 and RyR2;and 3) Define the molecular and sub-cellular mechanisms of arrhythmia associated with acquired defects in RyR2s including altered phosphorylation and redox modification. To achieve these goals, we will use state-of-the-art cellular physiology, single-channel biophysics and molecular biology approaches in combination with genetic and acquired models of cardiac disease. The findings gained from these studies will contribute to our understanding of the molecular and cellular factors involved in arrhythmias and facilitate identification of targets for rational therapies for cardiac arrhythmia.

Public Health Relevance

Abnormalities of the heart rhythm, known as arrhythmias, are a leading cause of death in the U.S. This proposal will study how improper regulation of calcium by the muscle cells of the heart contributes to arrhythmias. Information gained from this study may help design better therapies for arrhythmias.

Agency
National Institute of Health (NIH)
Institute
National Heart, Lung, and Blood Institute (NHLBI)
Type
Research Project (R01)
Project #
5R01HL063043-14
Application #
8241144
Study Section
Electrical Signaling, Ion Transport, and Arrhythmias Study Section (ESTA)
Program Officer
Lathrop, David A
Project Start
1999-09-20
Project End
2014-03-31
Budget Start
2012-04-01
Budget End
2013-03-31
Support Year
14
Fiscal Year
2012
Total Cost
$377,438
Indirect Cost
$129,938
Name
Ohio State University
Department
Physiology
Type
Schools of Medicine
DUNS #
832127323
City
Columbus
State
OH
Country
United States
Zip Code
43210
Shettigar, Vikram; Zhang, Bo; Little, Sean C et al. (2016) Rationally engineered Troponin C modulates in vivo cardiac function and performance in health and disease. Nat Commun 7:10794
Ho, Hsiang-Ting; Belevych, Andriy E; Liu, Bin et al. (2016) Muscarinic Stimulation Facilitates Sarcoplasmic Reticulum Ca Release by Modulating Ryanodine Receptor 2 Phosphorylation Through Protein Kinase G and Ca/Calmodulin-Dependent Protein Kinase II. Hypertension 68:1171-1178
Radwański, Przemysław B; Ho, Hsiang-Ting; Veeraraghavan, Rengasayee et al. (2016) Neuronal Na(+) Channels Are Integral Components of Pro-arrhythmic Na(+)/Ca(2+) Signaling Nanodomain That Promotes Cardiac Arrhythmias During β-adrenergic Stimulation. JACC Basic Transl Sci 1:251-266
Glukhov, Alexey V; Kalyanasundaram, Anuradha; Lou, Qing et al. (2015) Calsequestrin 2 deletion causes sinoatrial node dysfunction and atrial arrhythmias associated with altered sarcoplasmic reticulum calcium cycling and degenerative fibrosis within the mouse atrial pacemaker complex1. Eur Heart J 36:686-97
Roof, Steve R; Ho, Hsiang-Ting; Little, Sean C et al. (2015) Obligatory role of neuronal nitric oxide synthase in the heart's antioxidant adaptation with exercise. J Mol Cell Cardiol 81:54-61
Liu, Bin; Ho, Hsiang-Ting; Brunello, Lucia et al. (2015) Ablation of HRC alleviates cardiac arrhythmia and improves abnormal Ca handling in CASQ2 knockout mice prone to CPVT. Cardiovasc Res 108:299-311
Haizlip, Kaylan M; Milani-Nejad, Nima; Brunello, Lucia et al. (2015) Dissociation of Calcium Transients and Force Development following a Change in Stimulation Frequency in Isolated Rabbit Myocardium. Biomed Res Int 2015:468548
Lou, Qing; Belevych, Andriy E; Radwański, Przemysław B et al. (2015) Alternating membrane potential/calcium interplay underlies repetitive focal activity in a genetic model of calcium-dependent atrial arrhythmias. J Physiol 593:1443-58
Little, Sean C; Curran, Jerry; Makara, Michael A et al. (2015) Protein phosphatase 2A regulatory subunit B56α limits phosphatase activity in the heart. Sci Signal 8:ra72
Glynn, Patric; Musa, Hassan; Wu, Xiangqiong et al. (2015) Voltage-Gated Sodium Channel Phosphorylation at Ser571 Regulates Late Current, Arrhythmia, and Cardiac Function In Vivo. Circulation 132:567-77

Showing the most recent 10 out of 52 publications