In experiments proposed here we test the hypothesis that signaling through p21 activated kinase (Pak1) to protein phosphatase 2A (PP2A) is a novel mechanism of control of contractility by suppression of Ca-release units (CRU) in excitation contraction coupling (ECC) via effects on Ca2+ channel and ryanodine receptor function and stimulation of myofilament response to Ca2+ via sarcomeric protein dephosphorylation. Preliminary and published data in the current period of funding indicate that the function of Pak1 in integrated control of contractility involves signaling through 2-receptor/PKA phosphorylation of Pak1 and through sphingomyelin related lipid signaling that also activates Pak1. We also identified a novel mechanism of regulation of sarcomeric protein phosphorylation by various active forms of PKC6, which also acts in a signaling complex with Pak1.
Aim #1 of our proposals is to test the hypothesis that the Pak1-PP2A signaling cascade is a novel mechanism of control of contractility acting by regulating the balance of CRU activity in ECC and myofilament response to Ca2+.
Aim #2 is to determine the functional significance of diverse pathways of activation of PKC6 that induce dephosphorylation of cTnI and cTnT and phosphorylation of MyBP- C and Tm.
Aim # 3 extends our studies on novel control of myofilament response to Ca2+ to our objective to determine if specific desensitization of the myofilaments to Ca2+ can serve as a therapeutic tool to prevent or attenuate the development of hypertrophy and dysfunction in transgenic mouse models of familial hypertrophic cardiomyopathy (HCM). Our preliminary and published data indicate that desensitization of myofilament response to calcium is able to rescue adverse effects in HCM-linked sarcomeric mutations in mouse models. Results of experiments proposed will provide insights into a previously unappreciated mode of activation of contractility, which provides new leads in translation medicine in cardiomyopathies.

Public Health Relevance

Experiments proposed in the present application determine a new mechanism for control of the pressure developed in the heart that is responsible for ejection of blood. The new mechanism is likely to add to our understanding of heart failure, when pressure and ejection of blood is disturbed. Moreover, the new mechanism may lead to development of novel therapies for heart failure.

National Institute of Health (NIH)
National Heart, Lung, and Blood Institute (NHLBI)
Research Project (R01)
Project #
Application #
Study Section
Special Emphasis Panel (ZRG1-CVS-E (02))
Program Officer
Evans, Frank
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of Illinois at Chicago
Schools of Medicine
United States
Zip Code
Yar, Sumeyye; Monasky, Michelle M; Solaro, R John (2014) Maladaptive modifications in myofilament proteins and triggers in the progression to heart failure and sudden death. Pflugers Arch 466:1189-97
DeSantiago, Jaime; Bare, Dan J; Xiao, Lei et al. (2014) p21-Activated kinase1 (Pak1) is a negative regulator of NADPH-oxidase 2 in ventricular myocytes. J Mol Cell Cardiol 67:77-85
Wang, Yanwen; Tsui, Hoyee; Ke, Yunbo et al. (2014) Pak1 is required to maintain ventricular Ca²? homeostasis and electrophysiological stability through SERCA2a regulation in mice. Circ Arrhythm Electrophysiol 7:938-48
Simon, Jillian N; Chowdhury, Shamim A K; Warren, Chad M et al. (2014) Ceramide-mediated depression in cardiomyocyte contractility through PKC activation and modulation of myofilament protein phosphorylation. Basic Res Cardiol 109:445
Wang, Rui; Wang, Yanwen; Lin, Wee K et al. (2014) Inhibition of angiotensin II-induced cardiac hypertrophy and associated ventricular arrhythmias by a p21 activated kinase 1 bioactive peptide. PLoS One 9:e101974
Alves, Marco L; Dias, Fernando A L; Gaffin, Robert D et al. (2014) Desensitization of myofilaments to Ca2+ as a therapeutic target for hypertrophic cardiomyopathy with mutations in thin filament proteins. Circ Cardiovasc Genet 7:132-43
Holmes, Michael V; Exeter, Holly J; Folkersen, Lasse et al. (2014) Novel genetic approach to investigate the role of plasma secretory phospholipase A2 (sPLA2)-V isoenzyme in coronary heart disease: modified Mendelian randomization analysis using PLA2G5 expression levels. Circ Cardiovasc Genet 7:144-50
Li, King-Lun; Rieck, Daniel; Solaro, R John et al. (2014) In situ time-resolved FRET reveals effects of sarcomere length on cardiac thin-filament activation. Biophys J 107:682-93
Rieck, Daniel C; Li, King-Lun; Ouyang, Yexin et al. (2013) Structural basis for the in situ Ca(2+) sensitization of cardiac troponin C by positive feedback from force-generating myosin cross-bridges. Arch Biochem Biophys 537:198-209
Rajan, Sudarsan; Pena, James R; Jegga, Anil G et al. (2013) Microarray analysis of active cardiac remodeling genes in a familial hypertrophic cardiomyopathy mouse model rescued by a phospholamban knockout. Physiol Genomics 45:764-73

Showing the most recent 10 out of 70 publications