Asthma and chronic obstructive pulmonary disease (COPD) are chronic inflammatory diseases of the lung. These diseases are characterized by pulmonary inflammation and poor respiratory function. The underlying mechanisms controlling these diseases are still being elucidated. Interestingly, COPD patients and in some cases asthma patients develop inducible Bronchus Associated Lymphoid Tissue (iBALT). Bronchus Associated Lymphoid Tissue (BALT) was considered by early investigators to be a mucosal secondary lymphoid tissue embedded in the walls of the large airways, similar to Peyer's patches in the small intestine. However, we now know that BALT is not constitutively present in all mammalian species, notably mice and humans, and is induced in response to microbial exposure or other types of pulmonary inflammation. Therefore, the inducible lymphoid tissues in the lung may be more properly referred to as tertiary or ectopic lymphoid tissues and we have coined the term inducible BALT (iBALT) to describe them. Once formed, iBALT is maintained in the lung for several months or even longer and acts as a secondary lymphoid tissue that supports primary and secondary B and T cell responses to pulmonary antigens and pathogens. Importantly, pulmonary immune responses that occur in the presence of iBALT often have dramatically different characteristics than those that occur in the absence of iBALT. Thus, prior exposures of the respiratory tract can lead to lung remodeling and the development of iBALT, which regulates subsequent pulmonary immune responses via poorly defined mechanisms. We now have preliminary data showing that iBALT requires IL-17 and IL-22-expressing T cells for its formation, suggesting that iBALT forms in response to and participates in Th17 immune responses. Given the important role for Th17 cells in pulmonary diseases like asthma and COPD and the dramatic effects that iBALT has on pulmonary immune function to infectious agents, we believe that it is important to define the cellular and molecular mechanisms that control iBALT formation and to determine the mechanisms by which iBALT regulates pulmonary immune responses in the context of inflammatory disease.

Public Health Relevance

The experiments in this proposal will determine the mechanisms underlying the development of specific lymphoid structures that develop in the lung following pulmonary infection or inflammation. They will also determine the function of these structures in the context of pulmonary diseases like asthma and COPD.

National Institute of Health (NIH)
National Heart, Lung, and Blood Institute (NHLBI)
Research Project (R01)
Project #
Application #
Study Section
Lung Cellular, Molecular, and Immunobiology Study Section (LCMI)
Program Officer
Noel, Patricia
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of Alabama Birmingham
Internal Medicine/Medicine
Schools of Medicine
United States
Zip Code
Ballesteros-Tato, André; León, Beatriz; Lee, Byung O et al. (2014) Epitope-specific regulation of memory programming by differential duration of antigen presentation to influenza-specific CD8(+) T cells. Immunity 41:127-40
León, Beatriz; Bradley, John E; Lund, Frances E et al. (2014) FoxP3+ regulatory T cells promote influenza-specific Tfh responses by controlling IL-2 availability. Nat Commun 5:3495
Ballesteros-Tato, Andre; Randall, Troy D (2014) Priming of T follicular helper cells by dendritic cells. Immunol Cell Biol 92:22-7
Randall, T D; Mebius, R E (2014) The development and function of mucosal lymphoid tissues: a balancing act with micro-organisms. Mucosal Immunol 7:455-66
Randall, Troy D; Kern, Jeffrey A (2014) Tertiary lymphoid structures target the antitumor immune response to lung cancer. Am J Respir Crit Care Med 189:767-9
Johnston, Carl J; Manning, Casey M; Rangel-Moreno, Javier et al. (2013) Neonatal irradiation sensitizes mice to delayed pulmonary challenge. Radiat Res 179:475-84
Gopal, R; Rangel-Moreno, J; Slight, S et al. (2013) Interleukin-17-dependent CXCL13 mediates mucosal vaccine-induced immunity against tuberculosis. Mucosal Immunol 6:972-84
Botelho, Fernando M; Rangel-Moreno, Javier; Fritz, Dominik et al. (2013) Pulmonary expression of oncostatin M (OSM) promotes inducible BALT formation independently of IL-6, despite a role for IL-6 in OSM-driven pulmonary inflammation. J Immunol 191:1453-64
Slight, Samantha R; Rangel-Moreno, Javier; Gopal, Radha et al. (2013) CXCR5⁺ T helper cells mediate protective immunity against tuberculosis. J Clin Invest 123:712-26
Baptista, A P; Olivier, B J; Goverse, G et al. (2013) Colonic patch and colonic SILT development are independent and differentially regulated events. Mucosal Immunol 6:511-21

Showing the most recent 10 out of 47 publications