The overall goal of this application is to test the subcellular signaling domains and specific molecular targets for calmodulin kinase II (CaMKII) in heart. Work during the previous funding interval has added significantly to a growing body of evidence showing CaMKII contributes to heart failure and arrhythmias. Studies in this proposal will take advantage of new transgenic mice generated in our laboratory with nuclear and cytoplasmic membrane-targeted CaMKII inhibition. We will also use other mice and dominant-negative constructs to genetically replace CaMKII-targeted residues on key calcium homeostatic proteins. We have evidence that challenges the prevailing paradigm that nuclear CaMKII is preeminent for regulating gene transcription. Our findings suggest CaMKII signaling in cytoplasm crosstalks to the nucleus, and we hypothesize nuclear CaMKII signaling affects excitation contraction coupling and arrhythmias. Experiments to understand if nuclear and/or cytoplasmic CaMKII actions affect for myocyte enhancer factor 2 (MEF2) regulated gene programs will use novel in vivo, cellular and molecular approaches to dissect the effects of CaMKII on MEF2 activity. The following Specific Aims will be used: 1. Test the effects of membrane-targeted and nuclear-targeted CaMKII inhibition on myocardial physiology and as protection against structural heart disease in vivo. 2. Determine the cellular and molecular targets for cytoplasmic CaMKII signaling in cardiomyocyte physiology and disease. 3. Dissect the cellular and molecular signaling pathways for beta adrenergic receptor activation of MEF2 signaling in heart. RELEVENCE. This research is directed toward solving a major public health problem. It is estimated that ~400,000 Americans die annually from sudden cardiac death. Most of these patients have a history of myocardial infarction and heart failure. Targeting these pathways with drugs may reduce suffering in these patients.

National Institute of Health (NIH)
National Heart, Lung, and Blood Institute (NHLBI)
Research Project (R01)
Project #
Application #
Study Section
Cardiac Contractility, Hypertrophy, and Failure Study Section (CCHF)
Program Officer
Krull, Holly
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of Iowa
Internal Medicine/Medicine
Schools of Medicine
Iowa City
United States
Zip Code
Zhu, Linda J; Klutho, Paula J; Scott, Jason A et al. (2014) Oxidative activation of the Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) regulates vascular smooth muscle migration and apoptosis. Vascul Pharmacol 60:75-83
Luczak, Elizabeth D; Anderson, Mark E (2014) CaMKII oxidative activation and the pathogenesis of cardiac disease. J Mol Cell Cardiol 73:112-6
Wu, Yuejin; Anderson, Mark E (2014) CaMKII in sinoatrial node physiology and dysfunction. Front Pharmacol 5:48
Hund, Thomas J; Snyder, Jedidiah S; Wu, Xiangqiong et al. (2014) ?(IV)-Spectrin regulates TREK-1 membrane targeting in the heart. Cardiovasc Res 102:166-75
Zhu, Zhiyong; Sierra, Ana; Burnett, Colin M-L et al. (2014) Sarcolemmal ATP-sensitive potassium channels modulate skeletal muscle function under low-intensity workloads. J Gen Physiol 143:119-34
Viatchenko-Karpinski, Serge; Kornyeyev, Dmytro; El-Bizri, Nesrine et al. (2014) Intracellular Na+ overload causes oxidation of CaMKII and leads to Ca2+ mishandling in isolated ventricular myocytes. J Mol Cell Cardiol 76:247-56
Anderson, Mark E (2014) Three ways to die suddenly: do they all require calcium calmodulin-dependent protein kinase II? Trans Am Clin Climatol Assoc 125:173-85
Lai, Michael H; Wu, Yuejin; Gao, Zhan et al. (2014) BK channels regulate sinoatrial node firing rate and cardiac pacing in vivo. Am J Physiol Heart Circ Physiol 307:H1327-38
Chakraborty, Asima; Pasek, Daniel A; Huang, Tai-Qin et al. (2014) Inhibition of CaMKII does not attenuate cardiac hypertrophy in mice with dysfunctional ryanodine receptor. PLoS One 9:e104338
Scott, Jason A; Klutho, Paula J; El Accaoui, Ramzi et al. (2013) The multifunctional Caýýýýý/calmodulin-dependent kinase IIýý (CaMKIIýý) regulates arteriogenesis in a mouse model of flow-mediated remodeling. PLoS One 8:e71550

Showing the most recent 10 out of 98 publications