Cardiac ischemia-reperfusion (IR) injury is the pathologic process underlying heart-attack (acute myocardial infarction, AMI). Despite decades of research, cardioprotective therapies are scant, and AMI kills >220,000 people annually in the US. In addition, >380,000 patients/yr. undergo predictable ischemia during cardiac surgery. The overall goal of this ongoing program is to develop new cardioprotective therapies for IR injury. This is a competing renewal application, and in the previous funding cycle we published 19 primary research articles directly attributable to this award (and 17 additional papers). During this time we identified two key signaling players in the endogenous cardioprotective phenomenon of acute ischemic preconditioning (IPC). First, we showed NO?derived nitro-lipids is generated in IPC, and covalently adducts mitochondrial adenine nucleotide translocase 1 (ANT1). This causes mild uncoupling of mitochondrial oxidative phosphorylation, which is independently known to protect against IR injury. Second, we showed that the lysine deacetylase SIRT1 is necessary for acute cardioprotective signaling, and that SIRT1 transgenic mice are endogenously protected against IR injury. While these mechanisms may initially appear distinct, our preliminary data show that nitro-lipids covalently modify SIRT1, suggesting cross-talk between nitro-lipid &SIRT1 signaling. The downstream mechanisms which mediate cardioprotection by nitro-lipids and SIRT1 are poorly defined, but our preliminary data suggest the importance of alterations in metabolism and the stimulation of mitophagy, both of which are implicated in cardioprotection. Furthermore, we have developed a cell-based screening platform applicable to adult primary cardiomycytes, enabling discovery of small molecules which can engage these mechanisms to protect the heart from IR injury in-vivo. Overall, these observations have led to the central hypothesis that nitro-lipids &SIRT1 act in concert to protect the heart from IR injury via alterations in metabolism and mitophagy. In this project, we will exploit these endogenous protective pathways for therapeutic benefit, by delivering small molecules that modulate them both prior to ischemia AND at reperfusion. The end goal is to deliver novel cardioprotective molecules for pre-clinical development. To achieve this goal and test our hypothesis, we will pursue three following specific aims:
Aim 1 will identify cardioprotective targets of nitro-lipid action, with a focus on ANT1 and mitophagy.
Aim 2 will investigate cardioprotective targets of SIRT1, with a focus on metabolism.
Aim 3 will develop screening hits, with a focus on molecules that impact mitophagy and metabolism. Addressing these aims will yield a series of small molecule candidates for pre-clinical development as cardioprotective therapeutics, and will enhance our understanding of the underlying mechanisms of cardioprotection.

Public Health Relevance

During a heart attack, blockage of a coronary artery starves the cardiac tissue of oxygen and nutrients, a condition termed ischemia. The goal of this project is to develop new drugs to protect the heart during ischemia. In the previous funding cycle, we identified two key endogenous signals which play a role in cardioprotection, and this new project will find out more about these signals and how they work, as well as exploit these signals to design new therapies. The first signal is a family of lipids termed nitro-lipids, and the second isa protein called SIRT1. We propose that these signals work together, to alter the metabolism of the heart, and to promote endogenous recycling mechanisms inside heart cells. Together this brings about a protected state. We have also developed a screening assay, which allows us to find new small molecules that can trigger these protective signals. Thus, we are in possession of a number of drug candidates, which the project will develop into therapeutics. Every year in the US, over 220,000 people die from a heart attack (acute myocardial infarction) and a further 380,000 undergo a transient ischemic event during cardiac surgery. It is hoped that the small molecules emerging from this project will offer therapeutic benefit to these individuals.

Agency
National Institute of Health (NIH)
Institute
National Heart, Lung, and Blood Institute (NHLBI)
Type
Research Project (R01)
Project #
5R01HL071158-12
Application #
8717704
Study Section
Special Emphasis Panel (ZRG1-CVRS-Q (02))
Program Officer
Wong, Renee P
Project Start
2002-07-01
Project End
2017-05-31
Budget Start
2014-06-01
Budget End
2015-05-31
Support Year
12
Fiscal Year
2014
Total Cost
$376,075
Indirect Cost
$131,075
Name
University of Rochester
Department
Anesthesiology
Type
Schools of Dentistry
DUNS #
041294109
City
Rochester
State
NY
Country
United States
Zip Code
14627
Smith, Charles O; Wang, Yves T; Nadtochiy, Sergiy M et al. (2018) Cardiac metabolic effects of KNa1.2 channel deletion and evidence for its mitochondrial localization. FASEB J :fj201800139R
Zhang, Jimmy; Wang, Yves T; Miller, James H et al. (2018) Accumulation of Succinate in Cardiac Ischemia Primarily Occurs via Canonical Krebs Cycle Activity. Cell Rep 23:2617-2628
Peoples, Jessica N R; Maxmillian, Timmi; Le, Quynh et al. (2018) Metabolomics reveals critical adrenergic regulatory checkpoints in glycolysis and pentose-phosphate pathways in embryonic heart. J Biol Chem 293:6925-6941
Nadtochiy, Sergiy M; Wang, Yves T; Nehrke, Keith et al. (2018) Cardioprotection by nicotinamide mononucleotide (NMN): Involvement of glycolysis and acidic pH. J Mol Cell Cardiol 121:155-162
Sahni, Prateek V; Zhang, Jimmy; Sosunov, Sergey et al. (2018) Krebs cycle metabolites and preferential succinate oxidation following neonatal hypoxic-ischemic brain injury in mice. Pediatr Res 83:491-497
Resseguie, Emily A; Brookes, Paul S; O'Reilly, Michael A (2017) SMG-1 kinase attenuates mitochondrial ROS production but not cell respiration deficits during hyperoxia. Exp Lung Res 43:229-239
Smith, Charles Owen; Nehrke, Keith; Brookes, Paul S (2017) The Slo(w) path to identifying the mitochondrial channels responsible for ischemic protection. Biochem J 474:2067-2094
Brookes, Paul S; Taegtmeyer, Heinrich (2017) Metabolism: A Direct Link Between Cardiac Structure and Function. Circulation 136:2158-2161
Nadtochiy, Sergiy M; Wang, Yves T; Zhang, Jimmy et al. (2017) Potential mechanisms linking SIRT activity and hypoxic 2-hydroxyglutarate generation: no role for direct enzyme (de)acetylation. Biochem J 474:2829-2839
Wang, Hezhen; Huwaimel, Bader; Verma, Kshitij et al. (2017) Synthesis and Antineoplastic Evaluation of Mitochondrial Complex?II (Succinate Dehydrogenase) Inhibitors Derived from Atpenin?A5. ChemMedChem 12:1033-1044

Showing the most recent 10 out of 66 publications