This is an A2 resubmission of a renewal application to study left ventricular remodeling following myocardial infarction (MI). MI, even with current therapeutic strategies, remains a leading cause of heart failure. The identification of events that stimulate adverse remodeling of the left ventricle (LV) post-MI may provide therapeutic targets to prevent, slow, or reverse the progression to heart failure. Post-MI, extracellular matrix (ECM) turnover is a driving event in LV remodeling, and there is a well- established association between the inflammatory response and ECM turnover. An initial analysis of matrix metalloproteinase-9 (MMP-9) functions suggests that this particular MMP predominantly influences remodeling by altering the macrophage response, as MMP-9 null mice show impaired macrophage influx into the LV post- MI. MMP-9 has been shown to cleave ECM to generate bioactive peptides and to activate transforming growth factor b (TGFb), which potentially places MMP-9 downstream of the macrophage and upstream of key events that involve the cardiac fibroblast. The long-term goals of this project, accordingly, are to understand the roles of macrophages and macrophage-derived MMP-9 in the LV response to MI. This proposal will focus on elucidating macrophage and MMP-9 driven mechanisms to critically test the hypothesis that macrophages modulate the LV response to MI through MMP-9 effects on ECM substrates and transforming growth factor-b. Using a unique cell specific transgenic mouse model that overexpresses human MMP-9 only in macrophages and specific MMP-9 and TGFb interventions, we will determine the MMP-9 mediated events that most influence LV remodeling. To test our central hypothesis, we will 1) determine whether macrophage levels and activation status regulate fibroblast activation and LV remodeling;2) determine whether MMP-9 and TGFb regulate macrophage phenotype, fibroblast activation, and LV remodeling;and 3) determine whether bioactive ECM peptides generated by MMP-9 regulate LV remodeling post-MI through macrophage and fibroblast activation. We will use a multi-discipline approach that integrates physiology, cell biology, biochemistry, mass spectrometry, and histological approaches to unveil mechanisms and quantify the LV remodeling process as a function of macrophage activation status and MMP-9 levels. This proposal is innovative because most studies use MMP-9 as an output measurement and only determine whether MMP-9 levels change in response to a stimulus, not how the enzyme regulates ECM remodeling. The results of these studies will clarify the consequences of macrophage-derived MMP-9 on post- MI remodeling. Our multi-faceted approach will further advance the mechanistic understanding of the events that initiate post-MI LV remodeling, which may provide targets for translational research.

Public Health Relevance

Heart failure is the inability of the heart to adequately supply the body with oxygen and is a leading cause of death in the United States. Of the 50,000 heart failure patients diagnosed each year, 70% have heart failure due to a previous heart attack (myocardial infarction;MI). The main objective of this grant is to use a mouse MI model to understand how the macrophage, an inflammatory cell that regulates wound healing, and matrix metalloproteinase-9, an enzyme in the macrophage that regulates scar formation, direct the response to MI.

National Institute of Health (NIH)
National Heart, Lung, and Blood Institute (NHLBI)
Research Project (R01)
Project #
Application #
Study Section
Cardiac Contractility, Hypertrophy, and Failure Study Section (CCHF)
Program Officer
Adhikari, Bishow B
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of Mississippi Medical Center
Schools of Medicine
United States
Zip Code
DeLeon-Pennell, Kristine Y; Tian, Yuan; Zhang, Bai et al. (2016) CD36 Is a Matrix Metalloproteinase-9 Substrate That Stimulates Neutrophil Apoptosis and Removal During Cardiac Remodeling. Circ Cardiovasc Genet 9:14-25
Ma, Yonggang; Yabluchanskiy, Andriy; Iyer, Rugmani Padmanabhan et al. (2016) Temporal neutrophil polarization following myocardial infarction. Cardiovasc Res 110:51-61
Lindsey, Merry L; Iyer, Rugmani Padmanabhan; Jung, Mira et al. (2016) Matrix metalloproteinases as input and output signals for post-myocardial infarction remodeling. J Mol Cell Cardiol 91:134-40
Lindsey, Merry L; Hall, Michael E; Harmancey, Romain et al. (2016) Adapting extracellular matrix proteomics for clinical studies on cardiac remodeling post-myocardial infarction. Clin Proteomics 13:19
Ma, Yonggang (2016) LRP5: A novel anti-inflammatory macrophage marker that positively regulates migration and phagocytosis. J Mol Cell Cardiol 91:61-2
Francis Stuart, Samantha D; De Jesus, Nicole M; Lindsey, Merry L et al. (2016) The crossroads of inflammation, fibrosis, and arrhythmia following myocardial infarction. J Mol Cell Cardiol 91:114-22
Padmanabhan Iyer, Rugmani; Chiao, Ying Ann; Flynn, Elizabeth R et al. (2016) Matrix metalloproteinase-9-dependent mechanisms of reduced contractility and increased stiffness in the aging heart. Proteomics Clin Appl 10:92-107
Iyer, Rugmani Padmanabhan; Jung, Mira; Lindsey, Merry L (2016) MMP-9 signaling in the left ventricle following myocardial infarction. Am J Physiol Heart Circ Physiol 311:H190-8
Yabluchanskiy, Andriy; Ma, Yonggang; DeLeon-Pennell, Kristine Y et al. (2016) Myocardial Infarction Superimposed on Aging: MMP-9 Deletion Promotes M2 Macrophage Polarization. J Gerontol A Biol Sci Med Sci 71:475-83
Spinale, Francis G; Frangogiannis, Nikolaos G; Hinz, Boris et al. (2016) Crossing Into the Next Frontier of Cardiac Extracellular Matrix Research. Circ Res 119:1040-1045

Showing the most recent 10 out of 135 publications