Streptococcus pneumoniae (pneumococcus) is the most common cause of community-acquired pneumonia. Interactions of this pathogen with humans are complex, with pneumococcus causing a spectrum of disease ranging from asymptomatic colonization of upper airways to multi-organ infection and death. We propose to elucidate the hepatic acute phase response triggered by pneumococci in the lungs, and to examine whether pneumococcal subversion of this response is a critical virulence determinant during lung infection. The hepatic acute phase response is triggered by cytokines during pneumonia, with liver activation dependent on IL-6 (triggering STAT3) and on TNF and IL-1 (triggering NF-?B). We postulate that expression of these cytokines during pneumonia is driven by NF-?B RelA in resident lung myeloid cells, and these cytokines then activate both STAT3 and NF-?B in hepatocytes to mediate acute phase protein expression essential to preventing the spread of infection and inflammatory injury from the lungs to other organs and tissues. To test the central hypothesis that the hepatic acute phase response functions as a vascular shield to prevent dissemination of infection and injury from the infected lung, we propose to pursue the following specific aims: 1) Test the hypothesis that lung resident macrophages and dendritic cells initiate the hepatic acute phase response during pneumonia, using mice in which cytokine expression is inhibited by RelA mutation selectively in myeloid cells and in resident lung leukocytes. 2) Test the hypothesis that the hepatic acute phase response limits both dissemination of infection (bacteremia) and dissemination of injury (ARDS and multi-organ failure) during pneumonia, using mice in which the hepatic acute phase response is inhibited by combined targeting of both STAT3 and RelA selectively in hepatocytes. 3) Test the hypothesis that pneumococci subverting the hepatic acute phase response are more invasive in human patients and mouse models, using clinical isolates from human patients with asymptomatic carriage or bacteremic pneumonia in in vitro screens and in vivo models of infection. Innovations include the novel concepts to be tested, as well as the mice deficient in RelA and/or STAT3 in select cells and the in vitro screening assays of clinical isolates of pneumococcus. The proposed studies will have significance for filling knowledge gaps (elucidating the regulation and function of the acute phase response during pneumonia) and will guide further studies aiming to differentiate and treat particularly susceptible patients and especially virulent pneumococci.

Public Health Relevance

Streptococcus pneumoniae (pneumococcus) infection is the leading cause of pneumonia, and the spreading of pneumococcus from the lungs also causes bloodstream and brain infections which are life-threatening. The proposed studies will test whether and how activation of the liver prevents the spread of infection and disease from the lung to other organs. This new knowledge will guide further studies aiming to identify people who are especially susceptible and bacteria that are especially virulent, in order to better prevent and treat pneumococcal infections.

Agency
National Institute of Health (NIH)
Type
Research Project (R01)
Project #
5R01HL079392-09
Application #
8645682
Study Section
Special Emphasis Panel (ZRG1)
Program Officer
Eu, Jerry Pc
Project Start
Project End
Budget Start
Budget End
Support Year
9
Fiscal Year
2014
Total Cost
Indirect Cost
Name
Boston University
Department
Internal Medicine/Medicine
Type
Schools of Medicine
DUNS #
City
Boston
State
MA
Country
United States
Zip Code
02118
Hyatt, Lynnae D; Wasserman, Gregory A; Rah, Yoon J et al. (2014) Myeloid ZFP36L1 does not regulate inflammation or host defense in mouse models of acute bacterial infection. PLoS One 9:e109072
Ubags, Niki D; Vernooy, Juanita H; Burg, Elianne et al. (2014) The role of leptin in the development of pulmonary neutrophilia in infection and acute lung injury. Crit Care Med 42:e143-51
Yamamoto, Kazuko; Ahyi, Ayele-Nati N; Pepper-Cunningham, Zachary A et al. (2014) Roles of lung epithelium in neutrophil recruitment during pneumococcal pneumonia. Am J Respir Cell Mol Biol 50:253-62
Wilson, Andrew A; Kwok, Letty W; Porter, Emily L et al. (2013) Lentiviral delivery of RNAi for in vivo lineage-specific modulation of gene expression in mouse lung macrophages. Mol Ther 21:825-33
Stanya, Kristopher J; Jacobi, David; Liu, Sihao et al. (2013) Direct control of hepatic glucose production by interleukin-13 in mice. J Clin Invest 123:261-71
Quinton, Lee J; Blahna, Matthew T; Jones, Matthew R et al. (2012) Hepatocyte-specific mutation of both NF-*B RelA and STAT3 abrogates the acute phase response in mice. J Clin Invest 122:1758-63
Blahna, Matthew T; Jones, Matthew R; Quinton, Lee J et al. (2011) Terminal uridyltransferase enzyme Zcchc11 promotes cell proliferation independent of its uridyltransferase activity. J Biol Chem 286:42381-9
Pittet, Lynnelle A; Quinton, Lee J; Yamamoto, Kazuko et al. (2011) Earliest innate immune responses require macrophage RelA during pneumococcal pneumonia. Am J Respir Cell Mol Biol 45:573-81
Jones, Matthew R; Quinton, Lee J; Blahna, Matthew T et al. (2009) Zcchc11-dependent uridylation of microRNA directs cytokine expression. Nat Cell Biol 11:1157-63
Quinton, Lee J; Jones, Matthew R; Robson, Bryanne E et al. (2009) Mechanisms of the hepatic acute-phase response during bacterial pneumonia. Infect Immun 77:2417-26

Showing the most recent 10 out of 19 publications