Diabetes mellitus and its associated complications are a major health problem in the developed world. Diabetics are 2- to 4-times more likely to have cardiovascular diseases (CVD) than general population. One feature of diabetes that has become apparent in recent years is excess oxidant stress. In preliminary data presented here, we have found that hyperglycemia and free fatty acids (FFA), two hallmarks of type I and type II diabetes, impart an oxidant stress in endothelial cells. These results in lipid peroxiiation, tyrosine nitration of prostacyclin synthase (PGIS), reduced NO bioactivity, endothelial nitric oxide synthase (eNOS) uncoupling, and insulin resistance. We have also found that treatment with the AMP-activated kinase (AMPK) activator, 5-amino-4-imidazole carboxamide riboside (AICAR), prevents all of these events including the increase in oxidant stress and insulin resistance from occurring. A basic premise of this proposal is that AMPK activation could protect the endothelial cell against the adverse effects of hyperglycemia and FFA by increasing mitochondrial uncoupling protein (UCP)-2 that lead to a decrease in oxidant stress in parallel with an increase in NO bioactivity. Therefore, as a central hypothesis of this application, we propose that vascular diathesis of insulin resistance and diabetes is due, in part, from a hyperglycemia/FFA-induced oxidant stress and a compensatory activation of AMPK. The next part of our proposal will determine the consequences of AMPK activation on oxidant stress, endothelial function, and insulin signaling, capitalizing on preliminary data that AICAR reduces both cellular oxidant stress and insulin resistance from glucose and fatty acids in vitro and aortic lesions in Apo-E knockout (KO) enhanced by diabetes in vivo. In order to accomplish this goal, we propose to study 1). To determine if activation of AMPK by a number of means (pharmacological and molecular biological means) reduces oxidant stress and insulin resistance and to evaluate how it works, and 2). To determine if AMPK-dependent reduction in. oxidant stress and endothelial dysfunction is operating in diabetes in vivo. This powerful combination of in vitro and in vivo techniques will provide novel information as to how the metabolic stresses associated with diabetes cause damage to the endothelium. They should also yield insights into how endothelium attempts to protect itself against these stresses and whether AMPK is a potential target for therapy for diabetes.

National Institute of Health (NIH)
National Heart, Lung, and Blood Institute (NHLBI)
Research Project (R01)
Project #
Application #
Study Section
Vascular Cell and Molecular Biology Study Section (VCMB)
Program Officer
Ershow, Abby
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of Oklahoma Health Sciences Center
Internal Medicine/Medicine
Schools of Medicine
Oklahoma City
United States
Zip Code
Liu, Zhaoyu; Zhu, Huaiping; Dai, Xiaoyan et al. (2017) Macrophage Liver Kinase B1 Inhibits Foam Cell Formation and Atherosclerosis. Circ Res 121:1047-1057
Wang, Qilong; Zhang, Miao; Torres, Gloria et al. (2017) Metformin Suppresses Diabetes-Accelerated Atherosclerosis via the Inhibition of Drp1-Mediated Mitochondrial Fission. Diabetes 66:193-205
Okon, Imoh; Ding, Ye; Zou, Ming-Hui (2017) Ablation of Interferon Regulatory Factor 3 Promotes the Stability of Atherosclerotic Plaques. Hypertension 69:407-408
Duan, Quanlu; Song, Ping; Ding, Ye et al. (2017) Activation of AMP-activated protein kinase by metformin ablates angiotensin II-induced endoplasmic reticulum stress and hypertension in mice in vivo. Br J Pharmacol 174:2140-2151
Song, Ping; Ramprasath, Tharmarajan; Wang, Huan et al. (2017) Abnormal kynurenine pathway of tryptophan catabolism in cardiovascular diseases. Cell Mol Life Sci 74:2899-2916
Dai, Xiaoyan; Okon, Imoh; Liu, Zhaoyu et al. (2017) Ablation of Neuropilin 1 in Myeloid Cells Exacerbates High-Fat Diet-Induced Insulin Resistance Through Nlrp3 Inflammasome In Vivo. Diabetes 66:2424-2435
Zhang, W; Ding, Y; Zhang, C et al. (2017) Deletion of endothelial cell-specific liver kinase B1 increases angiogenesis and tumor growth via vascular endothelial growth factor. Oncogene 36:4277-4287
Tang, Xiaoqiang; Chen, Xiao-Feng; Wang, Nan-Yu et al. (2017) SIRT2 Acts as a Cardioprotective Deacetylase in Pathological Cardiac Hypertrophy. Circulation 136:2051-2067
Ding, Ye; Zou, Ming-Hui (2017) AMP-Activated Protein Kinase ?2 to the Rescue in Ischemic Heart. Circ Res 121:1113-1115
Zhang, Miao; Zhu, Huaiping; Ding, Ye et al. (2017) AMP-activated protein kinase ?1 promotes atherogenesis by increasing monocyte-to-macrophage differentiation. J Biol Chem 292:7888-7903

Showing the most recent 10 out of 102 publications