The RAS/ERK MAP kinase pathway transduces signals from multiple receptors in a wide variety of cell types. Over the past 10 years, germ line gain-of-function mutations in multiple pathway components were found in a set of related autosomal dominant human genetic disorders, the "RASopathies." These include Noonan Syndrome (NS), caused by PTPN11, SOS1, KRAS, NRAS, SHOC2 or RAF1 mutations, LEOPARD syndrome (LS), caused by PTPN11 mutations, Costello Syndrome (CS), caused by HRAS mutations, and Cardio-Facial- Cutaneous-Syndrome (CFCS) (caused by BRAF, MEK1 or MEK2 mutations). Although these syndromes share several phenotypes, most notably short stature, facial dysmorphia and various cardiac developmental defects, but they also vary considerably. The central tenets of our research are that: a) phenotypic similarities in RASopathies reflect enhanced RAS/ERK signaling, and can reveal key insights into the specific role of this pathway in the affected cell/tissue type;and b) phenotypic differences are due to tissue-specific differences in the function of pathway components and/or feedback pathways. Our long-range goal is to use mouse models of RASopathies to uncover nuances of Ras/Erk pathway regulation in health and disease, with a particular focus on their cardiac consequences. In the initial funding period, we developed global and/or inducible knock-in models for all of the RASopathies, and in some cases, for multiple alleles of a syndrome. We identified the cell-of- origin and cellular defect underlying valvuloseptal defects in Ptpn11 mutant NS, and found that, by contrast, a kinase-activated Raf1 allele (L613V) causes hypertrophic cardiomyopathy (HCM). Also as in humans, our LS model developed HCM. Strikingly, Erk activation was enhanced in L613V/+ hearts and HCM (and other NS features) was reversed by post-natal MEK-I treatment, whereas Akt/mTorc1 activity was increased in LS hearts, and could be reversed by rapamycin. For this continuation proposal, we have assembled a multi-disciplinary PI team to elucidate the detailed molecular and cellular basis for Raf1 mutant HCM, using genetic, proteomic, physiological and proteomic approaches.
Aim 1 uses our inducible Raf1L613V knock- in mice and cell-specific Cre recombinase lines to assess the contributions of cardiomyocytes and cardiac fibroblasts to HCM and the physiological consequences.
Aim 2 uses candidate and unbiased proteomic/modeling approaches to identify key Erk targets in Raf1 mutant HCM.
Aim 3 comprises further pre-clinical validation studies of MEK-inhibitors and other therapeutic agents for NS-associated HCM.

Public Health Relevance

Using our unique mouse models, the proposed work should help clarify the cellular and molecular defects in, and evaluate new personalized treatments for, abnormal heart thickening (HCM) in Noonan syndrome and related RASopathy syndromes.

Agency
National Institute of Health (NIH)
Institute
National Heart, Lung, and Blood Institute (NHLBI)
Type
Research Project (R01)
Project #
5R01HL083273-06
Application #
8313620
Study Section
Special Emphasis Panel (ZRG1-CB-N (02))
Program Officer
Schramm, Charlene A
Project Start
2007-07-16
Project End
2015-07-31
Budget Start
2012-08-01
Budget End
2013-07-31
Support Year
6
Fiscal Year
2012
Total Cost
$323,586
Indirect Cost
$14,405
Name
University Health Network
Department
Type
DUNS #
208469486
City
Toronto
State
ON
Country
Canada
Zip Code
M5 2-M9
Marin, Talita M; Keith, Kimberly; Davies, Benjamin et al. (2011) Rapamycin reverses hypertrophic cardiomyopathy in a mouse model of LEOPARD syndrome-associated PTPN11 mutation. J Clin Invest 121:1026-43
Wu, Xue; Simpson, Jeremy; Hong, Jenny H et al. (2011) MEK-ERK pathway modulation ameliorates disease phenotypes in a mouse model of Noonan syndrome associated with the Raf1(L613V) mutation. J Clin Invest 121:1009-25
Lee, Icksoo; Pecinova, Alena; Pecina, Petr et al. (2010) A suggested role for mitochondria in Noonan syndrome. Biochim Biophys Acta 1802:275-83
Stewart, Rodney A; Sanda, Takaomi; Widlund, Hans R et al. (2010) Phosphatase-dependent and -independent functions of Shp2 in neural crest cells underlie LEOPARD syndrome pathogenesis. Dev Cell 18:750-62
Araki, Toshiyuki; Chan, Gordon; Newbigging, Susan et al. (2009) Noonan syndrome cardiac defects are caused by PTPN11 acting in endocardium to enhance endocardial-mesenchymal transformation. Proc Natl Acad Sci U S A 106:4736-41
Kontaridis, Maria I; Yang, Wentian; Bence, Kendra K et al. (2008) Deletion of Ptpn11 (Shp2) in cardiomyocytes causes dilated cardiomyopathy via effects on the extracellular signal-regulated kinase/mitogen-activated protein kinase and RhoA signaling pathways. Circulation 117:1423-35