The long-range goal of this research is to determine how actin filament dynamics is regulated in the spectrin-actin lattice of the membrane skeleton to create the red blood cell (RBC) with its specialized membrane, unique biconcave shape and deformability properties. Mutations in membrane skeleton components produce human hereditary hemolytic anemias with fragile RBC membranes, due to defective membrane biogenesis and/or weakened interactions in the membrane skeleton, thereby leading to reduced stability in the circulation. The spectrin-actin lattice consists of spectrin tetramers attached to short actin filaments at junctional complexes (JCs), forming the strands and vertices of a quasi-hexagonal lattice. The short RBC actin filaments are capped by tropomodulin-1 (Tmod1) at their pointed ends and 1/2-adducin at their barbed ends, while tropomyosins (TMs) span along the filament length, binding to Tmod1 at the pointed filament end. Despite the importance of RBC actin filaments as structural nodes in the spectrin latice and JC anchorage sites for membrane proteins, the role of actin monomer-polymer dynamics in membrane skeleton structure and stability, or biogenesis during erythroid terminal differentiation is not understood. This proposal focuses on Tmods, a unique family of TM-regulated, actin filament pointed end capping proteins that control actin dynamics and stability, cell morphology and physiology. Absence of Tmod1 in mouse RBCs leads to a mild compensated sphero-elliptocytic anemia with osmotically fragile RBCs, and a disrupted membrane skeleton with mis- regulated actin filament lengths. In contrast, absence of Tmod3 leads to fetal anemia with embryonic lethality at E14.5-15.5 due to impaired definitive erythropoiesis. Unlike Tmod1, which is a strong actin filament pointed end capper, Tmod3 sequesters actin monomers but is a weak filament capper. We hypothesize that Tmod1 regulates actin dynamics to maintain filament lengths and membrane skeleton structure in mature RBCs, while Tmod3 regulates actin monomer pols to control membrane skeleton assembly during erythroid terminal differentiation.
The Specific Aims are: 1) To dissect the molecular and structural basis for Tmod1 and Tmod3 differential regulation of actin dynamics in vitro;2) To define actin dynamics in normal human RBCs, and in wild-type, Tmod1-null and 1/2-adducin-null mouse RBCs, and to screen as yet undiagnosed human hemolytic anemia patients for defects in TMODs;3) To determine the cellular basis for the Tmod3-null mouse fetal liver anemia, and test a requirement for Tmod3 in erythroblasts using bone marrow reconstitution and a RBC- specific conditional knockout for Tmod3;4) To investigate Tmod1 and Tmod3 functions in membrane skeleton assembly during erythroid terminal differentiation from cultured human CD34+ cells isolated from peripheral blood. Our studies of actin dynamics will define a novel control point for membrane skeleton assembly and stability in human and mouse RBCs and their precursors, providing insights into RBC membrane biogenesis and survival in normal contexts and in human hemolytic anemias.

Public Health Relevance

This project will investigate regulation of red blood cell (RBC) actin dynamics by tropomodulin (Tmod) capping of actin filament ends, and how this contributes to RBC formation and physiology in vivo. We will study actin regulation by Tmod proteins, study actin dynamics in normal human RBCs and in mouse hemolytic anemias due to deficiencies of Tmods, screen human hemolytic anemia patients for defects in TMODs, and study how TMODs contribute to formation of human RBCs from their progenitors. These studies will define the importance of actin dynamics in membrane skeleton biogenesis and stability for the first time, leading to better understanding, diagnosis and treatments for human hemolytic anemias.

Agency
National Institute of Health (NIH)
Institute
National Heart, Lung, and Blood Institute (NHLBI)
Type
Research Project (R01)
Project #
5R01HL083464-26
Application #
8279205
Study Section
Special Emphasis Panel (ZRG1-VH-C (02))
Program Officer
Sarkar, Rita
Project Start
1984-12-01
Project End
2015-04-30
Budget Start
2012-05-01
Budget End
2013-04-30
Support Year
26
Fiscal Year
2012
Total Cost
$473,750
Indirect Cost
$223,750
Name
Scripps Research Institute
Department
Type
DUNS #
781613492
City
La Jolla
State
CA
Country
United States
Zip Code
92037
Gokhin, David S; Tierney, Matthew T; Sui, Zhenhua et al. (2014) Calpain-mediated proteolysis of tropomodulin isoforms leads to thin filament elongation in dystrophic skeletal muscle. Mol Biol Cell 25:852-65
Lewis, Raymond A; Yamashiro, Sawako; Gokhin, David S et al. (2014) Functional effects of mutations in the tropomyosin-binding sites of tropomodulin1 and tropomodulin3. Cytoskeleton (Hoboken) 71:395-411
Yamashiro, Sawako; Gokhin, David S; Sui, Zhenhua et al. (2014) Differential actin-regulatory activities of Tropomodulin1 and Tropomodulin3 with diverse tropomyosin and actin isoforms. J Biol Chem 289:11616-29
McKeown, Caroline R; Nowak, Roberta B; Gokhin, David S et al. (2014) Tropomyosin is required for cardiac morphogenesis, myofibril assembly, and formation of adherens junctions in the developing mouse embryo. Dev Dyn 243:800-17
Ochala, Julien; Gokhin, David S; Iwamoto, Hiroyuki et al. (2014) Pointed-end capping by tropomodulin modulates actomyosin crossbridge formation in skeletal muscle fibers. FASEB J 28:408-15
Sui, Zhenhua; Nowak, Roberta B; Bacconi, Andrea et al. (2014) Tropomodulin3-null mice are embryonic lethal with anemia due to impaired erythroid terminal differentiation in the fetal liver. Blood 123:758-67
Gokhin, David S; Fowler, Velia M (2013) A two-segment model for thin filament architecture in skeletal muscle. Nat Rev Mol Cell Biol 14:113-9
Yamashiro, Sawako; Gokhin, David S; Kimura, Sumiko et al. (2012) Tropomodulins: pointed-end capping proteins that regulate actin filament architecture in diverse cell types. Cytoskeleton (Hoboken) 69:337-70
Nicolaou, K C; Jiang, Xuefeng; Lindsay-Scott, Peter J et al. (2011) Total synthesis and biological evaluation of monorhizopodin and 16-epi-monorhizopodin. Angew Chem Int Ed Engl 50:1139-44
Bao, Ning; Kodippili, Gayani C; Giger, Katie M et al. (2011) Single-cell electrical lysis of erythrocytes detects deficiencies in the cytoskeletal protein network. Lab Chip 11:3053-6

Showing the most recent 10 out of 21 publications