The Runx1-CBFbeta transcription factor is required for the emergence of all definitive hematopoietic cells. It is the earliest specific marker of sites from which hematopoietic stem and progenitor cells are produced in the conceptus. Runx1 is expressed in endothelial cells, mesenchymal cells, and in intra-aortic hematopoietic clusters, and in all committed hematopoietic progenitors and transplantable stem cells. We hypothesize that Runx1-CBFbeta is required, at least in part, for the transition between """"""""hemogenic endothelium"""""""" and hematopoietic cells during fetal development. However, if Runx1 is deleted in adult mice, after hematopoiesis is established, long-term repopulating hematopoietic stem cells persist, committed erythroid, myeloid, and megakaryocytic progenitors increase in number, and both erythropoiesis and terminal granulocyte differentiation are normal. Thus, there is an absolute requirement for Runx1-CBFbeta to establish hematopoiesis in the fetus, but not to maintain all aspects of it in the adult. One of our goals is to define the developmental window and cell types in which Runx1-CBFbeta is required to specify definitive hematopoiesis in the conceptus.
A second aim follows up on recent findings that the placenta may be a source of hematopoietic stem cells. We will determine where in the placenta hematopoietic stem cells reside, and whether they differentiate from endothelial cells in the allantois or in the placental labyrinth. Finally, we will attempt to identify the signaling sources that induce the first wave of Runx1 expression and definitive hematopoiesis in the conceptus. We will specifically examine whether Hedgehog, the upstream component of a signaling cascade required for definitive hematopoiesis in zebrafish, activates Runx1 expression and definitive hematopoiesis in the mouse conceptus. Together these aims will contribute to our understanding of the earliest events that establish definitive hematopoiesis in the mouse conceptus, and should help guide efforts to produce blood cells from embryonic sources in vitro.

Agency
National Institute of Health (NIH)
Institute
National Heart, Lung, and Blood Institute (NHLBI)
Type
Research Project (R01)
Project #
5R01HL091724-19
Application #
8197838
Study Section
Special Emphasis Panel (ZRG1-HEME-B (02))
Program Officer
Thomas, John
Project Start
1993-08-10
Project End
2013-03-31
Budget Start
2011-12-01
Budget End
2013-03-31
Support Year
19
Fiscal Year
2012
Total Cost
$389,813
Indirect Cost
$142,313
Name
University of Pennsylvania
Department
Anatomy/Cell Biology
Type
Schools of Medicine
DUNS #
042250712
City
Philadelphia
State
PA
Country
United States
Zip Code
19104
Tamplin, Owen J; Durand, Ellen M; Carr, Logan A et al. (2015) Hematopoietic stem cell arrival triggers dynamic remodeling of the perivascular niche. Cell 160:241-52
Ditadi, Andrea; Sturgeon, Christopher M; Tober, Joanna et al. (2015) Human definitive haemogenic endothelium and arterial vascular endothelium represent distinct lineages. Nat Cell Biol 17:580-91
Yzaguirre, Amanda D; Padmanabhan, Arun; de Groh, Eric D et al. (2015) Loss of neurofibromin Ras-GAP activity enhances the formation of cardiac blood islands in murine embryos. Elife 4:e07780
Satpathy, Ansuman T; Briseño, Carlos G; Cai, Xiongwei et al. (2014) Runx1 and Cbfβ regulate the development of Flt3+ dendritic cell progenitors and restrict myeloproliferative disorder. Blood 123:2968-77
Gerhardt, Dawson M; Pajcini, Kostandin V; D'altri, Teresa et al. (2014) The Notch1 transcriptional activation domain is required for development and reveals a novel role for Notch1 signaling in fetal hematopoietic stem cells. Genes Dev 28:576-93
Imanirad, Parisa; Solaimani Kartalaei, Parham; Crisan, Mihaela et al. (2014) HIF1α is a regulator of hematopoietic progenitor and stem cell development in hypoxic sites of the mouse embryo. Stem Cell Res 12:24-35
Li, Yan; Esain, Virginie; Teng, Li et al. (2014) Inflammatory signaling regulates embryonic hematopoietic stem and progenitor cell production. Genes Dev 28:2597-612
Tober, Joanna; Yzaguirre, Amanda D; Piwarzyk, Eileen et al. (2013) Distinct temporal requirements for Runx1 in hematopoietic progenitors and stem cells. Development 140:3765-76
de Pater, Emma; Kaimakis, Polynikis; Vink, Chris S et al. (2013) Gata2 is required for HSC generation and survival. J Exp Med 210:2843-50
Richard, Charlotte; Drevon, Cécile; Canto, Pierre-Yves et al. (2013) Endothelio-mesenchymal interaction controls runx1 expression and modulates the notch pathway to initiate aortic hematopoiesis. Dev Cell 24:600-11

Showing the most recent 10 out of 17 publications