Platelets are involved in the evolution of ischemic lesions, and normally function to protect from the hemorrhagic consequences of injury;furthermore, antiplatelet agents are the mainstays of treatment in cardiovascular and cerebrovascular disease. Despite these fundamentally important functions, very little information is available on the platelet genes and proteins that modulate the thrombohemorrhagic platelet phenotype. Recently, our laboratory has demonstrated that transcript profiling techniques (well-developed in genetic dissection and predictive models of malignancy) can be applied to platelets, with uniquely-developed modifications aimed at addressing limitations of RNA yield and leukocyte contamination. More recently, we have applied this approach to the study of essential thrombocythemia (ET), a platelet disorder frequently associated with thrombohemorrhagic consequences. Since the thrombohemorrhagic phenotypes associated with ET are hematopoietic cell-restricted (i.e. platelets and/or leukocytes), we propose to further develop this theme as a paradigm for identification of platelet-related molecular signatures that may be causally implicated in thrombotic or hemorrhagic stroke. We now propose to assimilate our expertise in platelet profiling to optimally define platelet interactive networks that regulate the thrombohemorrhagic balance. A multidisciplinary team with considerable expertise in computational biology, genetics, hemostasis, and proteomics has been assembled to specifically develop this theme.
In specific aim 1, we propose to develop a robust platform for integrated genetic and proteomic platelet analyses;a subaim of this focus will be development of a web-based, fully-annotated interface of interest to the broad research community interested in integrated platelet proteomic/transcriptomic analyses.
In specific aim 2, we will delineate and characterize an initial class of platelet genes and proteins that discriminate between the thrombo/hemorrhagic phenotype.
In specific aim 3, we will develop class prediction and scoring models for thrombohemorrhage applicable to larger cohorts. It is likely that integrated proteomic studies proposed within the context of this proposal will have broader implications to the larger subsets of patients with cerebrovascular or cardiovascular disease, leading to an expanded future research direction.

Public Health Relevance

Blood platelets are known to regulate clotting (thrombosis) and bleeding (hemorrhage), although only a limited number of genes have been identified that control this balance. In this proposal we will develop and apply sophisticated platelet profiling technologies to identify platelet genes that may be causally implicated in the balance between hemorrhage and thrombosis. We will study a human platelet disorder (essential thrombocythemia) as a focused model system, and as genes are identified, apply the model to expanded patient cohorts. These studies have wide-spread implications for larger numbers of patients who may suffer from cardiovascular disease and/or stroke.

National Institute of Health (NIH)
National Heart, Lung, and Blood Institute (NHLBI)
Research Project (R01)
Project #
Application #
Study Section
Special Emphasis Panel (ZRG1-HEME-C (02))
Program Officer
Sarkar, Rita
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
State University New York Stony Brook
Internal Medicine/Medicine
Schools of Medicine
Stony Brook
United States
Zip Code
Evensen, Nikki A; Kuscu, Cem; Nguyen, Hoang-Lan et al. (2013) Unraveling the role of KIAA1199, a novel endoplasmic reticulum protein, in cancer cell migration. J Natl Cancer Inst 105:1402-16
Bahou, Wadie F (2013) Genetic dissection of platelet function in health and disease using systems biology. Hematol Oncol Clin North Am 27:443-63
Huang, Erya; Zhu, Wei; Dhundale, Anil et al. (2013) Platelet genetic biomarker quantification: comparison of fluorescent microspheres and PCR platforms. Thromb Haemost 109:337-46
Wu, Xiao; Berkow, Kathryn; Frank, Daniel N et al. (2013) Comparative analysis of microbiome measurement platforms using latent variable structural equation modeling. BMC Bioinformatics 14:79
Chiariello, Carmine S; LaComb, Joseph F; Bahou, Wadie F et al. (2012) Ablation of Iqgap2 protects from diet-induced hepatic steatosis due to impaired fatty acid uptake. Regul Pept 173:36-46
Senzel, Lisa; Gnatenko, Dmitri V; Bahou, Wadie F (2009) The platelet proteome. Curr Opin Hematol 16:329-33