Fibrosis is a pathobiological process common to many tissues and diseases which results in tissue remodeling and loss of function, often necessitating organ replacement or leading to end-stage disease. No therapies are currently available that successfully arrest or reverse fibrosis, and this represents a significant unmet clinical need. Fibrosis occurs predominantly in soft tissues (lung, liver, kidney, heart, skin) through excess fibroblast activation to a contractile/proliferative/apoptosis resistant state and accompanying deposition of extracellular matrix. We have discovered that fibroblasts are exquisitely sensitive to alterations in matrix stiffness; this finding is true for both normal and disease-derived fibroblasts, and spans the stiffness range found in normal and fibrotic lung tissue. In this project, we seek to dissect a novel molecular pathway linking matrix stiffness to fibroblast activation, and test whether this pathway is relevant in human fibrosis and essential in driving fibrosis in model systems. We focus on the transcriptional co-activators YAP and TAZ, evolutionarily conserved regulators of organ size, cell cycle, and stem cell function. Our preliminary data demonstrate enhanced nuclear localization of YAP/TAZ in human IPF tissue, and strongly support an essential role for YAP and TAZ in fibroblast activation downstream of both matrix stiffness and TGF-beta, two pivotal regulators of fibroblast biology. We hypothesize that YAP and TAZ are mechanically activated regulators of lung fibrosis that coordinate and integrate fibroblast matrix stiffness and biochemical responses leading to a cascade of pro-fibrotic functions that drive progressive fibrosis. We will evaluate this hypothesis in two aims using in vitro, mouse and human tissue models relevant to human disease. The proposed studies will advance the field by elucidating a novel point of convergence linking mechanical and biochemical cues to fibroblast activation and pulmonary fibrosis. If successful, the proposed studies could lead to new avenues for development of therapies targeting YAP and TAZ in fibrosis of the lung and other soft tissues.

Public Health Relevance

The prognosis for patients with pulmonary fibrosis remains overwhelmingly negative, and new directions for therapeutic development are sorely needed. In particular, the fibroblast and its transition to an activated proliferative, contractile and matrix synthetic state appears to be a key target for therapeutic development. The proposed studies will investigate a new pathway through which mechanical and biochemical stimuli converge to activate fibroblasts and promote pulmonary fibrosis.

Agency
National Institute of Health (NIH)
Institute
National Heart, Lung, and Blood Institute (NHLBI)
Type
Research Project (R01)
Project #
5R01HL092961-07
Application #
9187038
Study Section
Lung Injury, Repair, and Remodeling Study Section (LIRR)
Program Officer
Harabin, Andrea L
Project Start
2008-07-01
Project End
2018-11-30
Budget Start
2016-12-01
Budget End
2017-11-30
Support Year
7
Fiscal Year
2017
Total Cost
Indirect Cost
Name
Mayo Clinic, Rochester
Department
Type
DUNS #
006471700
City
Rochester
State
MN
Country
United States
Zip Code
55905
Haak, Andrew J; Girtman, Megan A; Ali, Mohamed F et al. (2017) Phenylpyrrolidine structural mimics of pirfenidone lacking antifibrotic activity: A new tool for mechanism of action studies. Eur J Pharmacol 811:87-92
Haak, Andrew J; Tan, Qi; Tschumperlin, Daniel J (2017) Matrix biomechanics and dynamics in pulmonary fibrosis. Matrix Biol :
Tjin, Gavin; White, Eric S; Faiz, Alen et al. (2017) Lysyl oxidases regulate fibrillar collagen remodelling in idiopathic pulmonary fibrosis. Dis Model Mech 10:1301-1312
Schafer, Marissa J; White, Thomas A; Iijima, Koji et al. (2017) Cellular senescence mediates fibrotic pulmonary disease. Nat Commun 8:14532
Sicard, Delphine; Fredenburgh, Laura E; Tschumperlin, Daniel J (2017) Measured pulmonary arterial tissue stiffness is highly sensitive to AFM indenter dimensions. J Mech Behav Biomed Mater 74:118-127
Dieffenbach, Paul B; Haeger, Christina Mallarino; Coronata, Anna Maria F et al. (2017) Arterial stiffness induces remodeling phenotypes in pulmonary artery smooth muscle cells via YAP/TAZ-mediated repression of cyclooxygenase-2. Am J Physiol Lung Cell Mol Physiol 313:L628-L647
Tan, Qi; Choi, Kyoung Moo; Sicard, Delphine et al. (2017) Human airway organoid engineering as a step toward lung regeneration and disease modeling. Biomaterials 113:118-132
Liu, Fei; Haeger, Christina Mallarino; Dieffenbach, Paul B et al. (2016) Distal vessel stiffening is an early and pivotal mechanobiological regulator of vascular remodeling and pulmonary hypertension. JCI Insight 1:
Tschumperlin, Daniel J (2015) Matrix, mesenchyme, and mechanotransduction. Ann Am Thorac Soc 12 Suppl 1:S24-9
Liu, Fei; Lagares, David; Choi, Kyoung Moo et al. (2015) Mechanosignaling through YAP and TAZ drives fibroblast activation and fibrosis. Am J Physiol Lung Cell Mol Physiol 308:L344-57

Showing the most recent 10 out of 22 publications