Sulfonylurea receptors (SURs) provide a unique link between cardiac metabolism and excitability. Previous efforts on this project have demonstrated that both SUR1 and SUR2 genes are expressed in the heart, with spatial and pathological variability in different regions. Because these subunits confer different metabolic and pharmacologic sensitivities to KATP channels, this realization means that cardiac KATP channel activation may vary regionally and with disease state. Additional studies suggest that differentially spliced versions of the proteins may be expressed in the heart and confer differential functional consequences. The development of novel cell biological tools and transgenic animals have allowed us to generate extensive preliminary data that lead us to propose experiments using biochemical, cell biological and physiological approaches to reach a full understanding of the nature and role of SUR subunit variation in the heart. They are motivated by our discovery of differential subunit expression and consequent functional differences within the mouse heart based on analysis of genetically modified animals, and encompass both mechanistic studies of expression control, and studies of the functional consequences in model systems and human hearts.

Public Health Relevance

Sudden cardiac death due to arrhythmias annually accounts for >300,000 deaths in the U.S.A. and is closely associated with 'metabolic syndrome'. We are focused on SUR proteins which provide a unique link between cardiac metabolism and excitability, to understand how they are regulated within the heart and how they control heart function, in order to help develop new therapies to treat sudden cardiac death and arrhythmias.

National Institute of Health (NIH)
National Heart, Lung, and Blood Institute (NHLBI)
Research Project (R01)
Project #
Application #
Study Section
Special Emphasis Panel (ZRG1-CVRS-N (02))
Program Officer
Krull, Holly
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Washington University
Anatomy/Cell Biology
Schools of Medicine
Saint Louis
United States
Zip Code
Arakel, Eric C; Brandenburg, Sören; Uchida, Keita et al. (2014) Tuning the electrical properties of the heart by differential trafficking of KATP ion channel complexes. J Cell Sci 127:2106-19
Raphemot, Rene; Swale, Daniel R; Dadi, Prasanna K et al. (2014) Direct activation of ?-cell KATP channels with a novel xanthine derivative. Mol Pharmacol 85:858-65
Nichols, Colin G; Singh, Gautam K; Grange, Dorothy K (2013) KATP channels and cardiovascular disease: suddenly a syndrome. Circ Res 112:1059-72
Glukhov, Alexey V; Uchida, Keita; Efimov, Igor R et al. (2013) Functional roles of KATP channel subunits in metabolic inhibition. J Mol Cell Cardiol 62:90-8
Goettsch, Claudia; Hutcheson, Joshua D; Aikawa, Elena (2013) MicroRNA in cardiovascular calcification: focus on targets and extracellular vesicle delivery mechanisms. Circ Res 112:1073-84
Zhang, Hai Xia; Silva, Jonathan R; Lin, Yu-Wen et al. (2013) Heterogeneity and function of K(ATP) channels in canine hearts. Heart Rhythm 10:1576-83
Sala-Rabanal, Monica; Wang, Shizhen; Nichols, Colin G (2012) On potential interactions between non-selective cation channel TRPM4 and sulfonylurea receptor SUR1. J Biol Chem 287:8746-56
Razani, Babak; Zhang, Haixia; Schulze, P Christian et al. (2011) Fatty acid synthase modulates homeostatic responses to myocardial stress. J Biol Chem 286:30949-61
Zhang, Hai Xia; Akrouh, Alejandro; Kurata, Harley T et al. (2011) HMR 1098 is not an SUR isotype specific inhibitor of heterologous or sarcolemmal K ATP channels. J Mol Cell Cardiol 50:552-60
Sellitto, Angela D; Al-Dadah, Ashraf S; Schuessler, Richard B et al. (2011) An open sarcolemmal adenosine triphosphate-sensitive potassium channel is necessary for detrimental myocyte swelling secondary to stress. Circulation 124:S70-4

Showing the most recent 10 out of 17 publications