Acute lung injury (ALI) and its severe form acute respiratory distress syndrome (ARDS) are devastating syndromes responsible for significant morbidity and mortality. The pathogenesis of ARDS is still poorly understood and therapeutic options remain limited. Hyperoxia-induced lung injury is an established model which mimics human ARDS and has been used extensively by investigators. Lung epithelial cell death is a key feature of ALI and is crucial in the pathogenesis of ALI /ARDS. Cell death is regulated by signaling molecules, which have been shown to congregate on lipid rafts. Caveolin-1 (cav-1) and flotillin1(flot1) have been identified as lipid raft marker proteins, which are highly expressed in various lung cells. However, the regulation and function of flot1 in respiratory biology has been poorly, if at all, studied. Based on our published and preliminary studies, we believe that cav-1 and flot1 are important effector molecules which play critical roles in the pathogenesis of ALI and hyperoxia-induced epithelial cell death. Our published work has demonstrated that cav-1 null mice are resistant to hyperoxia induced ALI. Since our previous submission, our newly published data further showed that cav-1 increases hyperoxia-induced apoptosis via suppressing survivin. In contrast to cav-1, our data showed that flot1 protects against hyperoxia induced cell death. Cav-1 and flot1 together regulate hyperoxia induced cell death via Fas pathways independent of FasL. Flot1 and cav-1 both interacted with Fas after hyperoxia, indicating that cav-1 and flot1 cross talk and mediate the death signaling. We hypothesize that cav-1, flot1 and their cross-talk modulate hyperoxia induced epithelial cell death and ALI via regulating Fas signaling pathways. We anticipate that our studies will lead to the identification of novel targets for the development of therapeutic approaches against acute lung injury. We will test our hypothesis in the following specific aims:
Aim1 I: To determine the functional role of cav-1 and the underlying mechanisms by which cav-1 mediates hyperoxia induced epithelial cell death.
Aim 2 : To determine the regulation and function of flot1 in hyperoxia induced lung epithelial cell death and lung injury.
Aim 3 : To determine the cross-talk between cav-1 and flot1 in hyperoxia induced lung epithelial cell death and lung injury.

Public Health Relevance

This project will focus on the function and regulation of lipid raft protein caveolin-1 and flotillin1 in hyperoxia induced lung injury. Our proposed work will potentially identify novel targets and strategies to develop therapeutic approaches against human lung injury and ARDS.

National Institute of Health (NIH)
National Heart, Lung, and Blood Institute (NHLBI)
Research Project (R01)
Project #
Application #
Study Section
Lung Injury, Repair, and Remodeling Study Section (LIRR)
Program Officer
Harabin, Andrea L
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Brigham and Women's Hospital
United States
Zip Code
Lee, Heedoo; Zhang, Duo; Laskin, Debra L et al. (2018) Functional Evidence of Pulmonary Extracellular Vesicles in Infectious and Noninfectious Lung Inflammation. J Immunol 201:1500-1509
Zhang, Duo; Lee, Heedoo; Haspel, Jeffrey A et al. (2017) Long noncoding RNA FOXD3-AS1 regulates oxidative stress-induced apoptosis via sponging microRNA-150. FASEB J 31:4472-4481
Zhu, Ziwen; Zhang, Duo; Lee, Heedoo et al. (2017) Macrophage-derived apoptotic bodies promote the proliferation of the recipient cells via shuttling microRNA-221/222. J Leukoc Biol 101:1349-1359
Lee, Heedoo; Zhang, Duo; Rai, Ashish et al. (2017) The Obstacles to Current Extracellular Vesicle-Mediated Drug Delivery Research. J Pharm Pharm 4:156-158
Lee, Heedoo; Zhang, Duo; Wu, Jingxuan et al. (2017) Lung Epithelial Cell-Derived Microvesicles Regulate Macrophage Migration via MicroRNA-17/221-Induced Integrin ?1 Recycling. J Immunol 199:1453-1464
Zhang, Duo; Lee, Heedoo; Zhu, Ziwen et al. (2017) Enrichment of selective miRNAs in exosomes and delivery of exosomal miRNAs in vitro and in vivo. Am J Physiol Lung Cell Mol Physiol 312:L110-L121
Zhang, Duo; Lee, Heedoo; Cao, Yong et al. (2016) miR-185 mediates lung epithelial cell death after oxidative stress. Am J Physiol Lung Cell Mol Physiol 310:L700-10
Zhu, Ziwen; Zhang, Duo; Lee, Heedoo et al. (2016) Caenorhabditis elegans: An important tool for dissecting microRNA functions. Biomed Genet Genom 1:34-36
Lee, Heedoo; Zhang, Duo; Minhas, Jasleen et al. (2016) Extracellular Vesicles Facilitate the Intercellular Communications in the Pathogenesis of Lung Injury. Cell Dev Biol 5:
Lee, Heedoo; Zhang, Duo; Zhu, Ziwen et al. (2016) Epithelial cell-derived microvesicles activate macrophages and promote inflammation via microvesicle-containing microRNAs. Sci Rep 6:35250

Showing the most recent 10 out of 32 publications