Inhaled corticosteroids (ICS) are effective in controlling airway inflammation and asthma symptoms, but multiple long term studies indicate that ICS do not change the natural course of disease progression. This leaves unanswered the question of identifying novel pathways that might account for airway remodeling and persistent asthma. Here we propose that aberrant remodeling of the airway might be initiated by humoral features of an inflammatory cellular microenvironment, but is perpetuated and amplified by changes in the physical microenvironment. We propose here the notion that passive matrix distensibility and active matrix stretch, as are found in the normal airway in vivo, tend to be protective against aberrant remodeling. This hypothesis is novel, is mechanistic and is testable in three experimental aims.
Aim 1 tests the hypothesis that a substrate of physiological distensibility is protective against a proliferative / synthetic phenotype.
Aim 2 tests the hypothesis that a substrate with physiological levels of stretch causes cytoskeletal fluidization that is also protective against a proliferative / synthetic phenotype.
Aim 3 asks the question, Do responses to the physical microenvironment differ between cells resident in the normal versus the asthmatic airway. That is to say, is the resident cell in the asthmatic airway a victim of its physical microenvironment? Or instead, do innate differences dominate the cellular phenotype? These aims will be carried out in the isolated human lung fibroblast, and the generality of the results will be confirmed in the human airway smooth muscle cell, both of which play central roles in remodeling of the asthmatic airway.

Public Health Relevance

Just as they are influenced by a chemical microenvironment defined by ligation of humoral factors and matrix- associated proteins, cells resident within the airway may be influenced by a mechanical microenvironment defined by physical forces. The role of the mechanical microenvironment represents a new dimension with the potential of deepening our understanding of the behavior of the normal airway and its remodeling in persistent asthma.

Agency
National Institute of Health (NIH)
Institute
National Heart, Lung, and Blood Institute (NHLBI)
Type
Research Project (R01)
Project #
5R01HL102373-03
Application #
8385534
Study Section
Respiratory Integrative Biology and Translational Research Study Section (RIBT)
Program Officer
Banks-Schlegel, Susan P
Project Start
2010-12-01
Project End
2014-11-30
Budget Start
2012-12-01
Budget End
2013-11-30
Support Year
3
Fiscal Year
2013
Total Cost
$458,360
Indirect Cost
$174,546
Name
Harvard University
Department
Public Health & Prev Medicine
Type
Schools of Public Health
DUNS #
149617367
City
Boston
State
MA
Country
United States
Zip Code
02115
Tambe, Dhananjay T; Croutelle, Ugo; Trepat, Xavier et al. (2013) Monolayer stress microscopy: limitations, artifacts, and accuracy of recovered intercellular stresses. PLoS One 8:e55172
Steward Jr, Robert L; Rosner, Sonia R; Zhou, Enhua H et al. (2013) Illuminating human health through cell mechanics. Swiss Med Wkly 143:w13766
Zhou, Enhua H; Martinez, Fernando D; Fredberg, Jeffrey J (2013) Cell rheology: mush rather than machine. Nat Mater 12:184-5
Coughlin, Mark F; Bielenberg, Diane R; Lenormand, Guillaume et al. (2013) Cytoskeletal stiffness, friction, and fluidity of cancer cell lines with different metastatic potential. Clin Exp Metastasis 30:237-50
Trepat, Xavier; Fredberg, Jeffrey J (2011) Plithotaxis and emergent dynamics in collective cellular migration. Trends Cell Biol 21:638-46
Tambe, Dhananjay T; Hardin, C Corey; Angelini, Thomas E et al. (2011) Collective cell guidance by cooperative intercellular forces. Nat Mater 10:469-75