We have accrued new data that suggests a new nutritional basis as a contributory pathway to the development of atherosclerotic heart disease. The overall pathway involves an interplay between dietary intake of lipid (the choline moiety of phosphatidyl choline), intestinal microbiota (gut flora), genetic susceptibility (hepatic expression levels of flavin monooxygenase 3, FMO3), and generation of pro-atherosclerotic metabolites that promote atherosclerotic heart disease and its major adverse complications (myocardial infarction (MI), stroke, and death). Intestinal microbiota ("gut flora"), comprised of trillions of typically non-pathogenic commensal organisms, serve as a filter for our greatest environmental exposure - what we eat. Gut flora play an essential role, aiding in the digestion and absorption of many nutrients. Alterations in gut flora can be associated with changes across a wide range of metabolic pathways. Similarly, alterations in diet influence both the composition of gut flora and plasma levels of metabolites. Animal studies have recently shown that intestinal microbial communities can influence traits, and metabolomic studies of inbred mouse strains have shown that gut microbiota may play an active role in the development of complex dysmetabolic phenotypes, such as susceptibility to insulin resistance and non-alcoholic fatty liver disease. Demonstration of a link between gut flora dependent phospholipid metabolism and atherosclerosis risk through generation of pro-atherosclerotic metabolites has not yet been reported. The overall goal of this proposal is to test the hypothesis that gut flora dependent metabolism of dietary phosphatidylcholine is mechanistically linked to the pathogenesis of cardiovascular disease.
The specific aims are:
Aim 1) Testing the hypothesis that dietary phosphatidylcholine metabolites choline, TMANO and betaine are both diagnostic markers for cardiac risk and mechanistically linked to development of atherosclerosis.
Aim 2) Testing the hypothesis that gut flora plays a modulatory role in atherosclerosis.

Public Health Relevance

Discovery of a relationship between gut flora-dependent metabolism of dietary phosphatidylcholine and cardiovascular disease pathogenesis provides opportunities for development of both novel diagnostic tests and therapeutic approaches for the treatment and prevention of atherosclerotic heart disease.

Agency
National Institute of Health (NIH)
Institute
National Heart, Lung, and Blood Institute (NHLBI)
Type
Research Project (R01)
Project #
5R01HL103866-04
Application #
8460968
Study Section
Integrative Nutrition and Metabolic Processes Study Section (INMP)
Program Officer
Ershow, Abby
Project Start
2010-08-01
Project End
2015-04-30
Budget Start
2013-05-01
Budget End
2014-04-30
Support Year
4
Fiscal Year
2013
Total Cost
$688,811
Indirect Cost
$250,078
Name
Cleveland Clinic Lerner
Department
Other Basic Sciences
Type
Schools of Medicine
DUNS #
135781701
City
Cleveland
State
OH
Country
United States
Zip Code
44195
Tang, W H Wilson; Wang, Zeneng; Shrestha, Kevin et al. (2015) Intestinal microbiota-dependent phosphatidylcholine metabolites, diastolic dysfunction, and adverse clinical outcomes in chronic systolic heart failure. J Card Fail 21:91-6
Grodin, Justin L; Hammadah, Muhammad; Fan, Yiying et al. (2015) Prognostic value of estimating functional capacity with the use of the duke activity status index in stable patients with chronic heart failure. J Card Fail 21:44-50
Kennedy, David J; Fan, Yiying; Wu, Yuping et al. (2014) Plasma ceruloplasmin, a regulator of nitric oxide activity, and incident cardiovascular risk in patients with CKD. Clin J Am Soc Nephrol 9:462-7
Huang, Ying; DiDonato, Joseph A; Levison, Bruce S et al. (2014) An abundant dysfunctional apolipoprotein A1 in human atheroma. Nat Med 20:193-203
Tang, W H Wilson; Wang, Zeneng; Fan, Yiying et al. (2014) Prognostic value of elevated levels of intestinal microbe-generated metabolite trimethylamine-N-oxide in patients with heart failure: refining the gut hypothesis. J Am Coll Cardiol 64:1908-14
Tang, W H Wilson; Topol, Eric J; Fan, Yiying et al. (2014) Prognostic value of estimated functional capacity incremental to cardiac biomarkers in stable cardiac patients. J Am Heart Assoc 3:e000960
Tang, W H Wilson; Hazen, Stanley L (2014) The contributory role of gut microbiota in cardiovascular disease. J Clin Invest 124:4204-11
Hartiala, Jaana; Bennett, Brian J; Tang, W H Wilson et al. (2014) Comparative genome-wide association studies in mice and humans for trimethylamine N-oxide, a proatherogenic metabolite of choline and L-carnitine. Arterioscler Thromb Vasc Biol 34:1307-13
Hazen, Stanley L; Brown, J Mark (2014) Eggs as a dietary source for gut microbial production of trimethylamine-N-oxide. Am J Clin Nutr 100:741-3
Brown, J Mark; Hazen, Stanley L (2014) Metaorganismal nutrient metabolism as a basis of cardiovascular disease. Curr Opin Lipidol 25:48-53

Showing the most recent 10 out of 31 publications