Idiopathic Pulmonary Fibrosis (IPF) is a fibrotic lung disease characterized by the accumulation of activated mesenchymal cells (myofibroblasts) within subepithelial clusters called fibroblastic foci. The abundance of these fibroblastic foci correlates with the dismal prognosis of this disease, which has a median survival of only 2-3 years. No pharmacologic intervention has improved survival for patients with IPF, and there is an urgent need for novel and efficacious therapies to treat this disease. IPF pathogenesis involves a dysfunctional response to chronic/recurrent alveolar epithelial injury. Increased lung stiffness is a physiologic correlate of pulmonary fibrosis that has been thought to result from myofibroblast accumulation and excessive deposition of extracellular matrix (ECM). Calling this paradigm of fibrogenesis into question, recent studies show that increased tissue stiffness precedes myofibroblast accumulation and matrix production in liver fibrosis. These findings suggest that increased tissue stiffness may not be a simple consequence of fibrosis;it may directly contribute to fibrogenesis. Prior studies of the myofibroblast fate regulation, however, have focused on the effects of soluble mediators (transforming growth factor beta-1 and endothelin-1), using rigid plastic substrates with supra-physiologic stiffness. The role of mechanotransduction in the regulation of myofibroblast fate is not known, and the mechanisms by which biomechanical signals from the ECM modulate biochemical signals from soluble factors to regulate fibroblast survival/apoptosis are poorly understood. Focal adhesion kinase (FAK) is an integral component of mechanotransduction signaling that is critical for the maintenance of myofibroblast survival. FAK is increased in fibrotic lungs, and inhibition of FAK attenuates bleomycin-induced fibrosis in mice. Moreover, plasmin-mediated ECM proteolysis, which induces myofibroblast apoptosis, is associated with the loss of FAK activity. The central role of FAK in pulmonary fibrosis and in the regulation of myofibroblast survival motivates our central hypothesis that mechanical signals associated with increased lung parenchymal stiffness are critical for mesenchymal cell resistance to apoptosis and, therefore, the pathogenesis of pulmonary fibrosis.
The specific aims of this proposal are to (1) determine the mechanisms by which substrates with physiologic and pathologic stiffness differentially regulate mesenchymal cell apoptosis;(2) define how mechanical stimuli modulate the effects of soluble mediators on mesenchymal cell apoptosis;and (3) determine the relationship between lung compliance, fibrogenesis, and mesenchymal cell accumulation. The proposed studies will enhance our fundamental understanding of myofibroblast fate regulation in physiologic and pathologic wound healing and facilitate identification of novel anti-fibrotic targets for intervention in pulmonary fibrosis.

Public Health Relevance

The proposed studies will enhance our fundamental understanding of myofibroblast fate regulation in physiologic and pathologic wound healing and facilitate identification of novel anti-fibrotic targets for intervention in pulmonary fibrosis.

Agency
National Institute of Health (NIH)
Type
Research Project (R01)
Project #
5R01HL105489-04
Application #
8680326
Study Section
Lung Injury, Repair, and Remodeling Study Section (LIRR)
Program Officer
Eu, Jerry Pc
Project Start
Project End
Budget Start
Budget End
Support Year
4
Fiscal Year
2014
Total Cost
Indirect Cost
Name
University of Michigan Ann Arbor
Department
Internal Medicine/Medicine
Type
Schools of Medicine
DUNS #
City
Ann Arbor
State
MI
Country
United States
Zip Code
48109
Ashley, Shanna L; Sisson, Thomas H; Wheaton, Amanda K et al. (2016) Targeting Inhibitor of Apoptosis Proteins Protects from Bleomycin-Induced Lung Fibrosis. Am J Respir Cell Mol Biol 54:482-92
Horowitz, Jeffrey C; Osterholzer, John J; Marazioti, Antonia et al. (2016) "Scar-cinoma": viewing the fibrotic lung mesenchymal cell in the context of cancer biology. Eur Respir J 47:1842-54
Sisson, Thomas H; Ajayi, Iyabode O; Subbotina, Natalya et al. (2015) Inhibition of myocardin-related transcription factor/serum response factor signaling decreases lung fibrosis and promotes mesenchymal cell apoptosis. Am J Pathol 185:969-86
Matthes, Stephanie A; LaRouere, Thomas J; Horowitz, Jeffrey C et al. (2015) Plakoglobin expression in fibroblasts and its role in idiopathic pulmonary fibrosis. BMC Pulm Med 15:140
Liu, Fei; Lagares, David; Choi, Kyoung Moo et al. (2015) Mechanosignaling through YAP and TAZ drives fibroblast activation and fibrosis. Am J Physiol Lung Cell Mol Physiol 308:L344-57
Sanders, Yan Y; Cui, Zongbin; Le Saux, Claude Jourdan et al. (2015) SMAD-independent down-regulation of caveolin-1 by TGF-*: effects on proliferation and survival of myofibroblasts. PLoS One 10:e0116995
Rubin, Jonathan M; Horowitz, Jeffrey C; Sisson, Thomas H et al. (2015) Ultrasound Strain Measurements for Evaluating Local Pulmonary Ventilation. IEEE Int Ultrason Symp 2015:
Huang, Steven K; Horowitz, Jeffrey C (2014) Outstaying their Welcome: The Persistent Myofibroblast in IPF. Austin J Pulm Respir Med 1:3
Thannickal, Victor J; Henke, Craig A; Horowitz, Jeffrey C et al. (2014) Matrix biology of idiopathic pulmonary fibrosis: a workshop report of the national heart, lung, and blood institute. Am J Pathol 184:1643-51
Blackwell, Timothy S; Tager, Andrew M; Borok, Zea et al. (2014) Future directions in idiopathic pulmonary fibrosis research. An NHLBI workshop report. Am J Respir Crit Care Med 189:214-22

Showing the most recent 10 out of 21 publications