Lung transplantation is the only long-term option for many end stage lung diseases, but chronic allograft dysfunction manifest as bronchiolitis obliterans syndrome (BOS) develops in e50% of recipients by 5 years and is the principal barrier to long term survival. Microbial factors are believed to play an important role in BOS pathogenesis, based on associations with certain microbial agents, linkage to host genes involved in microbial defense, and other factors. However, current understanding of the relationship between lung microbes and transplant outcome is limited by reliance on traditional methods requiring culture or a priori knowledge of specific pathogens, focus on single agents rather than communities, and an absence of comprehensive and systematic information on allograft microbial populations in lung transplant recipients in general and specifically in those with vs without BOS. Recent advances using culture-independent molecular approaches are revealing remarkable insights into microbial populations in multiple ecological niches and their roles in health and disease, but have not been applied to lung transplantation. Our group has applied this emerging technology to complex bacterial, fungal &viral populations in gut, blood and, recently, the respiratory tract. We have developed novel high stringency sampling, sequencing &analytic approaches to define microbial populations in the lower respiratory tract (LRT) by bronchoscopy, including methods to account for challenges in LRT analysis such as upper respiratory tract carryover &environmental source admixture;tools to identify lung-enriched or unique organisms;and preliminary data revealing aberrant communities and specific taxa enriched in lung transplant allografts. Our hypothesis is that an abnormal LRT microbiome is established following lung transplant, and that specific features of community composition are associated with the development of BOS, which can be identified through systematic culture-independent methodology utilizing high stringency approaches.
Our specific aims are to: (1) Define the respiratory tract microbiome established in lung transplant recipients over the first year post-transplant;(2) Determine prospectively the relationship between the allograft microbiome populations and subsequent development of BOS;(3) Define the lower respiratory tract microbiome at the time of graft dysfunction in a case-control of transplant recipients experiencing BOS compared with recipients without BOS. The proposal leverages two highly synergistic programs - lung transplant clinical research, and deep sequencing microbiome studies - with the long-term goal of providing critical understanding of microbial populations in the lung transplant respiratory tract and its role in BOS, the major impediment to long-term transplant success.

Public Health Relevance

Lung transplantation is the only option for many people with end stage lung diseases, but long term survival is limited mainly by a syndrome of late transplant failure called Bronchiolitis Obliterans Syndrome (BOS). Research suggests that microbes (bacteria, fungi, viruses) play an important role in the development of BOS, but how they colonize the transplanted lung and are related BOS is not understood. New technology now enables comprehensive study of all the microbes at a site (the microbiome), and we have developed methods to apply them to the lung. We will use these new technologies, combined with our active lung transplant research program, to understand the lung microbes (lung microbiome) in lung transplant recipients, and role leading to BOS and late transplant failure.

National Institute of Health (NIH)
National Heart, Lung, and Blood Institute (NHLBI)
Research Project (R01)
Project #
Application #
Study Section
Lung Cellular, Molecular, and Immunobiology Study Section (LCMI)
Program Officer
Eu, Jerry Pc
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of Pennsylvania
Internal Medicine/Medicine
Schools of Medicine
United States
Zip Code
Segal, Leopoldo N; Clemente, Jose C; Tsay, Jun-Chieh J et al. (2016) Enrichment of the lung microbiome with oral taxa is associated with lung inflammation of a Th17 phenotype. Nat Microbiol 1:16031
Hergott, Christopher B; Roche, Aoife M; Tamashiro, Edwin et al. (2016) Peptidoglycan from the gut microbiota governs the lifespan of circulating phagocytes at homeostasis. Blood 127:2460-71
Williams, Brett; Mirmonsef, Paria; Boucher, Charles A B et al. (2016) A Summary of the First HIV Microbiome Workshop 2015. AIDS Res Hum Retroviruses 32:935-941
Abbas, A A; Diamond, J M; Chehoud, C et al. (2016) The Perioperative Lung Transplant Virome: Torque Teno Viruses are Elevated in Donor Lungs and Show Divergent Dynamics In Primary Graft Dysfunction. Am J Transplant :
Kelly, Brendan J; Imai, Ize; Bittinger, Kyle et al. (2016) Composition and dynamics of the respiratory tract microbiome in intubated patients. Microbiome 4:7
Young, J C; Chehoud, C; Bittinger, K et al. (2015) Viral metagenomics reveal blooms of anelloviruses in the respiratory tract of lung transplant recipients. Am J Transplant 15:200-9
Kelly, Brendan J; Gross, Robert; Bittinger, Kyle et al. (2015) Power and sample-size estimation for microbiome studies using pairwise distances and PERMANOVA. Bioinformatics 31:2461-8
Morris, Alison; Gibson, Kevin; Collman, Ronald G (2014) The lung microbiome in idiopathic pulmonary fibrosis. What does it mean and what should we do about it? Am J Respir Crit Care Med 190:850-2
Bittinger, Kyle; Charlson, Emily S; Loy, Elizabeth et al. (2014) Improved characterization of medically relevant fungi in the human respiratory tract using next-generation sequencing. Genome Biol 15:487