Asthma is a chronic inflammatory lung disease that affects an estimated 23 million Americans (16 million adults), 12 million of whom experience at least one asthma attack annually. The symptoms of asthma cause significant economic burden on the healthcare systems ($18B in 2008) as well as dramatic impact on the quality of patients'lives. Asthma is characterized by airway inflammation and edema. Recently, the long recognized increase in airway wall microvessel density and expanded blood volume have been suggested to contribute significantly to lung function. This project combines the recognized expertise of Professor Elizabeth Wagner, PhD (PI) in pulmonary angiogenesis physiology and Professor Gregory M. Lanza, MD PhD (PD/PI), whose nanomedicine-based molecular imaging and therapy is well known, particularly in the context of angiogenesis in cancer and atherosclerosis. The overarching hypotheses of this proposal are to use nanomedicine approach to noninvasively characterize bronchial angiogenesis (new vessel formation), to deliver acute antiangiogenic therapy to reduce airway remodeling and improve pulmonary function, and to maintain the acute benefits of this new treatment with standard-of-care low dose steroids.

Public Health Relevance

Asthma is pathologically characterized by airway structure remodeling resulting from damage to airway epithelium, eosinophil infiltration, smooth muscle hyperplasia, and basement membrane thickening. Increases in the number and size of vessels within the airway wall have long been recognized as an element of asthma remodeling, occurring in mild, moderate, and severe asthmatic lungs of patients young and old. However, recent studies now point to a functional relationship between the severity of chronic asthma and increasing microvessel density, suggesting that microvascular blood volume contributes significantly to airway obstruction. The overarching hypotheses of this proposal are that nanomedicine approach can be used effectively: 1) to noninvasively quantify bronchial angiogenesis, 2) to deliver acute antiangiogenic therapy to reduce airway remodeling and improve pulmonary function, and 3) to maintain the acute benefits of antiangiogenic treatment with low dose steroids. This nanomedicine approach to asthma employs quantitative image stratification and targeted prodrug nanotherapy in conjunction with current standard of care drugs to offer a clinically translatable approach to ameliorate the progression of moderate to severe asthma ultimately to reduce hospitalizations and home health-care costs.

National Institute of Health (NIH)
National Heart, Lung, and Blood Institute (NHLBI)
Research Project (R01)
Project #
Application #
Study Section
Nanotechnology Study Section (NANO)
Program Officer
Noel, Patricia
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Washington University
Internal Medicine/Medicine
Schools of Medicine
Saint Louis
United States
Zip Code
Eldridge, Lindsey; Moldobaeva, Aigul; Zhong, Qiong et al. (2016) Bronchial Artery Angiogenesis Drives Lung Tumor Growth. Cancer Res 76:5962-5969
Esser, Alison K; Schmieder, Anne H; Ross, Michael H et al. (2016) Dual-therapy with αvβ3-targeted Sn2 lipase-labile fumagillin-prodrug nanoparticles and zoledronic acid in the Vx2 rabbit tumor model. Nanomedicine 12:201-11
Moldobaeva, Aigul; Jenkins, John; Zhong, Qiong et al. (2016) Lymphangiogenesis in rat asthma model. Angiogenesis :
Pan, Dipanjan; Pham, Christine T N; Weilbaecher, Katherine N et al. (2016) Contact-facilitated drug delivery with Sn2 lipase labile prodrugs optimize targeted lipid nanoparticle drug delivery. Wiley Interdiscip Rev Nanomed Nanobiotechnol 8:85-106
Zhong, Qiong; Jenkins, John; Moldobaeva, Aigul et al. (2016) Effector T Cells and Ischemia-Induced Systemic Angiogenesis in the Lung. Am J Respir Cell Mol Biol 54:394-401
Wang, Kezheng; Pan, Dipanjan; Schmieder, Anne H et al. (2015) Synergy between surface and core entrapped metals in a mixed manganese-gadolinium nanocolloid affords safer MR imaging of sparse biomarkers. Nanomedicine 11:601-9
Pan, Dipanjan; Kim, Benjamin; Hu, Grace et al. (2015) A strategy for combating melanoma with oncogenic c-Myc inhibitors and targeted nanotherapy. Nanomedicine (Lond) 10:241-51
Wang, Kezheng; Pan, Dipanjan; Schmieder, Anne H et al. (2015) Atherosclerotic neovasculature MR imaging with mixed manganese-gadolinium nanocolloids in hyperlipidemic rabbits. Nanomedicine 11:569-78
Zhang, Ruiying; Pan, Dipanjan; Cai, Xin et al. (2015) alphaVbeta3-targeted copper nanoparticles incorporating an Sn 2 lipase-labile fumagillin prodrug for photoacoustic neovascular imaging and treatment. Theranostics 5:124-33
Schmieder, Anne H; Caruthers, Shelton D; Keupp, Jochen et al. (2015) Recent Advances in (19)Fluorine Magnetic Resonance Imaging with Perfluorocarbon Emulsions. Engineering (Beijing) 1:475-489

Showing the most recent 10 out of 32 publications