Activation of the mTORC1 complex is a critical step in the progression of cardiac disease after myocardial infarction and pressure overload induced hypertrophy. This fact has spurred interest for ways to therapeutic target the mTORC1 complex in the heart. However, no drugs are currently available that specifically target mTORC1 in cardiomyocytes highlighting the need for the development of new therapeutic regimes. This proposal will inhibit mTORC1 through a novel molecular strategy involving PRAS40, an endogenous mTORC1 inhibitor and substrate. PRAS40 has been identified in the last years as a powerful tool to inhibit cellular growth in cancer cells. A unique molecular feature of PRAS40 is to inhibit mTORC1 and simultaneously increase mTORC2 activation, which increase cellular survival via increased AKT activation. Judicious enhancement of PRAS40 expression will inhibit pathological growth and senescence on the one hand and improve survival on the other hand. Accomplishing the stated aims of this proposal will provide a first comprehensive characterization of PRAS40 in cardiac biology. The innovation of this proposal is based on the first characterization of PRAS40 in the cardiac context and the unique molecular profile of PRAS40. The short- term goal is to delineate the critical importance of PRAS40 in the heart and demonstrate the efficiency of PRAS40 interventional approaches to inhibit pathological growth, blunt cardiac senescence and improve insulin signaling.
Specific aims are: 1) Pathological cardiac growth and senescence are inhibited by PRAS40, 2) cell survival and insulin signaling are improved by PRAS40 and 3) that mTORC1 inhibition together with mTORC2 activation by PRAS40 is protective against pathological damage. The significance of these studies is to define ways to blunt hyperactivation of mTORC1 in cardiac diseases with the goal to delineate new therapeutic ways to target mTORC1 in the heart. Collectively, the studies in this proposal will pave the way for interventional approaches to regulate PRAS40 activity in service to block pathological growth and senescence and improving AKT dependent signaling.

Public Health Relevance

Heart disease, especially heart failure, is a major public health issue in the United States placing a considerable burden upon our health care system. Despite recent progress in understanding pathophysiology, heart failure still carries a 5-year mortality that rivals most cancers. This proposal focuses upon a novel fundamental molecular mechanism involving inhibition of pathological growth and blunting of senescence together with improving survival to maintain cardiac structure and function after myocardial infarction or pressure overload.

Agency
National Institute of Health (NIH)
Institute
National Heart, Lung, and Blood Institute (NHLBI)
Type
Research Project (R01)
Project #
1R01HL113647-01A1
Application #
8446101
Study Section
Cardiac Contractility, Hypertrophy, and Failure Study Section (CCHF)
Program Officer
Wong, Renee P
Project Start
2013-02-15
Project End
2017-01-31
Budget Start
2013-02-15
Budget End
2014-01-31
Support Year
1
Fiscal Year
2013
Total Cost
$373,750
Indirect Cost
$123,750
Name
San Diego State University
Department
Biology
Type
Schools of Arts and Sciences
DUNS #
073371346
City
San Diego
State
CA
Country
United States
Zip Code
92182
Mohsin, Sadia; Wu, Joseph C; Sussman, Mark A (2014) Predicting the future with stem cells. Circulation 129:136-8
Hariharan, Nirmala; Sussman, Mark A (2014) Stressing on the nucleolus in cardiovascular disease. Biochim Biophys Acta 1842:798-801
Völkers, Mirko; Doroudgar, Shirin; Nguyen, Nathalie et al. (2014) PRAS40 prevents development of diabetic cardiomyopathy and improves hepatic insulin sensitivity in obesity. EMBO Mol Med 6:57-65
Anderson, Mark E; Goldhaber, Joshua; Houser, Steven R et al. (2014) Embryonic stem cell-derived cardiac myocytes are not ready for human trials. Circ Res 115:335-8
Sin, Jon; Puccini, Jenna M; Huang, Chengqun et al. (2014) The impact of juvenile coxsackievirus infection on cardiac progenitor cells and postnatal heart development. PLoS Pathog 10:e1004249
Quijada, Pearl; Sussman, Mark A (2014) Making it stick: chasing the optimal stem cells for cardiac regeneration. Expert Rev Cardiovasc Ther 12:1275-88
Din, Shabana; Konstandin, Mathias H; Johnson, Bevan et al. (2014) Metabolic dysfunction consistent with premature aging results from deletion of Pim kinases. Circ Res 115:376-87
Hariharan, Nirmala; Sussman, Mark A (2014) Pin1: a molecular orchestrator in the heart. Trends Cardiovasc Med 24:256-62
Gaetani, Roberto; Feyen, Dries A M; Doevendans, Pieter A et al. (2014) Different types of cultured human adult cardiac progenitor cells have a high degree of transcriptome similarity. J Cell Mol Med 18:2147-51
Toko, Haruhiro; Hariharan, Nirmala; Konstandin, Mathias H et al. (2014) Differential regulation of cellular senescence and differentiation by prolyl isomerase Pin1 in cardiac progenitor cells. J Biol Chem 289:5348-56

Showing the most recent 10 out of 19 publications