The OVERALL OBJECTIVE of this proposal is to integrate the anatomic and physiologic information derived from computed tomographic angiograms for the precise identification of coronary artery lesions that cause ischemia. This proposal is a companion study to ISCHEMIA Trial. For patients with stable ischemic heart disease, myocardial ischemia may arise as a consequence of obstructive coronary artery disease (CAD) and is useful for guiding decisions of revascularization. To date, non-invasive stress tests have served as a mainstay for identifying ischemia;these tests include echocardiography, magnetic resonance and myocardial perfusion scintigraphy (MPS). Among these, MPS is performed most commonly due to its ability to identify obstructive CAD, reclassify CAD likelihood, and predict adverse events. CT has emerged as a non-invasive method that permits direct visualization of CAD, demonstrates high performance for obstructive CAD compared to invasive coronary angiography (ICA), and predicts adverse prognosis. Beyond stenosis, CT enables evaluation of additional atherosclerotic plaque characteristics (APCs) that demonstrate high agreement to invasive methods and may augment determination of coronary lesions that cause ischemia. Recent developments in CT also permit physiologic assessment of CAD by applying computational fluid dynamics to typically- acquired CT scans for calculation of coronary artery pressure and flow, thus enabling the non-invasive calculation of fractional flow reserve (FFRCT), a measure of vessel-specific ischemia. The OVERALL HYPOTHESIS of this proposal is that integrating anatomic APCs with physiologic FFRCT will optimize identification of coronary lesions that are ischemia-causing. We propose 3 specific aims:
AIM 1 : To assess performance of anatomic APCs by CT for diagnosis of vessel-specific ischemia.
AIM 2 : To assess performance of physiologic FFRCT for diagnosis of vessel-specific ischemia.
AIM 3 : To directly compare an integrated anatomic-physiologic (APC-FFRCT) CT measure to MPS for diagnosis of lesion-specific ischemia. The work in this proposal will provide the rationale for a novel diagnostic paradigm that is more accurate than conventional stress imaging testing for identifying patients who manifest ischemia and pinpointing the coronary lesions that are the cause;thus, allowing for better selection of individuals for revascularization and eliminating unnecessary invasive procedures.

Public Health Relevance

For patients with ischemic heart disease, non-invasive stress tests are targeted towards identifying individuals with myocardial ischemia, or reduced blood flow to the heart muscle. Non-invasive computed tomography (CT) scans of the heart now allow for advanced characterization of heart artery blockages, as well as determination of whether blockages cause ischemia. This study will establish whether CT permits diagnosis of ischemia in a manner more accurate than stress testing for not only identifying patients who have ischemia but also pinpointing the blockages that are the cause.

Agency
National Institute of Health (NIH)
Institute
National Heart, Lung, and Blood Institute (NHLBI)
Type
Research Project (R01)
Project #
1R01HL118019-01
Application #
8479164
Study Section
Clinical and Integrative Cardiovascular Sciences Study Section (CICS)
Program Officer
Fleg, Jerome
Project Start
2013-09-01
Project End
2018-07-31
Budget Start
2013-09-01
Budget End
2014-07-31
Support Year
1
Fiscal Year
2013
Total Cost
$693,866
Indirect Cost
$232,654
Name
Weill Medical College of Cornell University
Department
Radiation-Diagnostic/Oncology
Type
Schools of Medicine
DUNS #
060217502
City
New York
State
NY
Country
United States
Zip Code
10065
Min, James K; Hasegawa, James T; Machacz, Susanne F et al. (2016) Costs and clinical outcomes for non-invasive versus invasive diagnostic approaches to patients with suspected in-stent restenosis. Int J Cardiovasc Imaging 32:309-15
Schulman-Marcus, Joshua; ó Hartaigh, Bríain; Gransar, Heidi et al. (2016) Sex-Specific Associations Between Coronary Artery Plaque Extent and Risk of Major Adverse Cardiovascular Events: The CONFIRM Long-Term Registry. JACC Cardiovasc Imaging 9:364-72
Baldassarre, Lauren A; Raman, Subha V; Min, James K et al. (2016) Noninvasive Imaging to Evaluate Women With Stable Ischemic Heart Disease. JACC Cardiovasc Imaging 9:421-35
Rizvi, Asim; Hartaigh, Bríain Ó; Knaapen, Paul et al. (2016) Rationale and Design of the CREDENCE Trial: computed TomogRaphic evaluation of atherosclerotic DEtermiNants of myocardial IsChEmia. BMC Cardiovasc Disord 16:190
Shaw, Leslee J (2016) Sex Differences in Cardiovascular Imaging. JACC Cardiovasc Imaging 9:494-7
Lee, Ji Hyun; Han, Donghee; Danad, Ibrahim et al. (2016) Multimodality Imaging in Coronary Artery Disease: Focus on Computed Tomography. J Cardiovasc Ultrasound 24:7-17
Valenti, Valentina; Hartaigh, Bríain Ó; Cho, Iksung et al. (2016) Absence of Coronary Artery Calcium Identifies Asymptomatic Diabetic Individuals at Low Near-Term But Not Long-Term Risk of Mortality: A 15-Year Follow-Up Study of 9715 Patients. Circ Cardiovasc Imaging 9:e003528
Danad, Ibrahim; Szymonifka, Jackie; Schulman-Marcus, Joshua et al. (2016) Static and dynamic assessment of myocardial perfusion by computed tomography. Eur Heart J Cardiovasc Imaging 17:836-44
Han, Donghee; Lee, Ji Hyun; Hartaigh, Bríain Ó et al. (2016) Role of computed tomography screening for detection of coronary artery disease. Clin Imaging 40:307-10
Min, James K; Jones, Erica C; Peña, Jessica M (2016) The Future From the Past: A Chance for Change. J Am Coll Cardiol 67:1769-71

Showing the most recent 10 out of 30 publications