Platelet activation plays a major role in hemostasis and thrombosis. Platelet agonists activate complex signaling cascades resulting in shape change, aIIbb3 integrin activation, and dense granule release and thromboxane A2 (TXA2) generation, amplifying the initial signal. The signaling cascades and the intracellular interaction of these signaling molecules regulating platelet physiological events have not been completely understood. In this application, we propose to test the overall hypothesis that PDK1-Akt-Pyk2 axis regulates platelet functional responses. We propose to understand the interaction of these signaling molecules and the downstream events in the agonist-induced platelet activation using complimentary biochemical, pharmacological, and gene knockout approaches. PDK1 is known to phosphorylate a number of kinases, but its function in platelets has not been elucidated.
Aim 1) We hypothesize that PDK1 plays an important positive regulatory role in platelets through selective phosphorylation and activation of Akt. We propose to test this hypothesis through selective pharmacological inhibitors of PDK1 and using conditional PDK1 null mice. Our preliminary data shows that PDK1 phosphorylation of Thr308 is crucial for the activity of Akt and downstream signaling events. Furthermore our preliminary data shows that PDK1 inhibition affects agonist-induced platelet integrin activation and TXA2 generation.
Aim 2) We hypothesize that intracellular association of PAK with Akt is crucial for its phosphorylation by PDK1. We propose to evaluate the role of PAK in translocation of Akt to the membrane using pharmacological approaches and PAK1 and 2 knockout mice. In preliminary data, we show that Akt translocation to the membrane and phosphorylation follows different kinetics. We postulate that PYK2, through tyrosine phosphorylation of PI3 kinases and PDK1, regulates platelet functional responses and Akt phosphorylation. We also postulate that Pyk2 is activated by G12/13 pathways and regulates thromboxane generation. We will evaluate the function of Pyk2 in aIIbb3 integrin activation, TXA2 generation, clot retraction, and spreading on immobilized fibrinogen, using knockout mice and pharmacological inhibitors. Our preliminary data shows that Pyk2 plays an important role in these platelet functional responses. These studies will enhance our understanding of the intracellular interactions of signaling molecules and their role in platelet activation, and might identify potential newer targets for the treatmentof thrombosis.

National Institute of Health (NIH)
National Heart, Lung, and Blood Institute (NHLBI)
Research Project (R01)
Project #
Application #
Study Section
Special Emphasis Panel (ZRG1)
Program Officer
Sarkar, Rita
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Temple University
Schools of Medicine
United States
Zip Code
Badolia, Rachit; Kostyak, John C; Dangelmaier, Carol et al. (2017) Syk Activity Is Dispensable for Platelet GP1b-IX-V Signaling. Int J Mol Sci 18:
Badolia, Rachit; Inamdar, Vaishali; Manne, Bhanu Kanth et al. (2017) Gq pathway regulates proximal C-type lectin-like receptor-2 (CLEC-2) signaling in platelets. J Biol Chem 292:14516-14531
Buitrago, Lorena; Manne, Bhanu Kanth; Andre, Pierrette et al. (2016) Identification of novel Syk-independent functional roles of Fc?RIIa in platelet outside-in signaling using transgenic mice expressing human Fc?RIIa. Platelets 27:488-90
Liverani, Elisabetta; Rico, Mario C; Tsygankov, Alexander Y et al. (2016) P2Y12 Receptor Modulates Sepsis-Induced Inflammation. Arterioscler Thromb Vasc Biol 36:961-71
Reppschl├Ąger, Kevin; Gosselin, Jeanne; Dangelmaier, Carol A et al. (2016) TULA-2 Protein Phosphatase Suppresses Activation of Syk through the GPVI Platelet Receptor for Collagen by Dephosphorylating Tyr(P)346, a Regulatory Site of Syk. J Biol Chem 291:22427-22441
Inamdar, Vaishali; Patel, Akruti; Manne, Bhanu Kanth et al. (2015) Characterization of UBO-QIC as a G?q inhibitor in platelets. Platelets 26:771-8
Badolia, Rachit; Manne, Bhanu Kanth; Dangelmaier, Carol et al. (2015) IPA3 non-specifically enhances phosphorylation of several proteins in human platelets. Platelets 26:501-3
Canobbio, Ilaria; Cipolla, Lina; Guidetti, Gianni F et al. (2015) The focal adhesion kinase Pyk2 links Ca2+ signalling to Src family kinase activation and protein tyrosine phosphorylation in thrombin-stimulated platelets. Biochem J 469:199-210
Manganaro, Daria; Consonni, Alessandra; Guidetti, Gianni F et al. (2015) Activation of phosphatidylinositol 3-kinase ? by the platelet collagen receptors integrin ?2?1 and GPVI: The role of Pyk2 and c-Cbl. Biochim Biophys Acta 1853:1879-88
Kostyak, John C; Kunapuli, Satya P (2015) PKC? is dispensable for megakaryopoiesis. Platelets 26:610-1

Showing the most recent 10 out of 26 publications