A promising and widely studied example of vertebrate synaptic plasticity is long-term potentiation (LTP), the persistent synaptic enhancement seen following a brief period of coincident pre- and postsynaptic activity. The cellular and molecular mechanisms responsible for LTP are thought to participate in physiological and pathological processes including learning, memory, developmental synapse specificity, pain, neuronal death, and dementia. For many years the locus undergoing changes during LTP (pre- and/or postsynaptic) was debated. Identification of the post-synapse as a site of modification has led to considerable advancement in the field. Evidence accrued over the past ten years indicates that delivery of AMPA-type glutamate receptors to synapses plays a critical role during LTP. However, the mechanisms controlling synaptic incorporation of AMPA receptors are not clear. In particular, the path by which AMPA receptors reach synapses during LTP, lateral diffusion and/or exocytosis, is hotly contested. Since these paths employ such mechanistically distinct processes, knowing each of their roles will shed light on the underlying molecular machinery operating during LTP. We have developed molecular, optical and electrophysiological methods in rodent brain slices to elucidate the mechanisms controlling AMPA receptor synaptic incorporation during LTP and experience-driven plasticity. In this grant period we plan to: 1. Measure optically synaptic incorporation of recombinant AMPA receptors. 2. Determine the role played by AMPA receptor exocytosis in LTP. 3. Determine the role played by AMPA receptor lateral diffusion in LTP. 4. Determine the pattern of synaptic potentiation in single neurons following experience-driven plasticity.

Public Health Relevance

Synapses, the sites of communication between nerve cells, are modified during learning and memory. How this modification takes place, at the molecular level, will help scientists understand the biological basis of learning and memory, as well as what goes wrong during diseases such as Alzheimer's disease.

National Institute of Health (NIH)
National Institute of Mental Health (NIMH)
Research Project (R01)
Project #
Application #
Study Section
Neurotransporters, Receptors, and Calcium Signaling Study Section (NTRC)
Program Officer
Asanuma, Chiiko
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of California San Diego
Schools of Medicine
La Jolla
United States
Zip Code
Nabavi, Sadegh; Fox, Rocky; Alfonso, Stephanie et al. (2014) GluA1 trafficking and metabotropic NMDA: addressing results from other laboratories inconsistent with ours. Philos Trans R Soc Lond B Biol Sci 369:20130145
Nabavi, Sadegh; Fox, Rocky; Proulx, Christophe D et al. (2014) Engineering a memory with LTD and LTP. Nature 511:348-52
Lin, John Y; Sann, Sharon B; Zhou, Keming et al. (2013) Optogenetic inhibition of synaptic release with chromophore-assisted light inactivation (CALI). Neuron 79:241-53
Sheng, Morgan; Malinow, Roberto; Huganir, Richard (2013) Neuroscience: Strength in numbers. Nature 493:482-3
Nabavi, Sadegh; Kessels, Helmut W; Alfonso, Stephanie et al. (2013) Metabotropic NMDA receptor function is required for NMDA receptor-dependent long-term depression. Proc Natl Acad Sci U S A 110:4027-32
Kessels, Helmut W; Nabavi, Sadegh; Malinow, Roberto (2013) Metabotropic NMDA receptor function is required for *-amyloid-induced synaptic depression. Proc Natl Acad Sci U S A 110:4033-8
Li, Bo; Piriz, Joaquin; Mirrione, Martine et al. (2011) Synaptic potentiation onto habenula neurons in the learned helplessness model of depression. Nature 470:535-9
Makino, Hiroshi; Malinow, Roberto (2009) AMPA receptor incorporation into synapses during LTP: the role of lateral movement and exocytosis. Neuron 64:381-90
Li, Bo; Devidze, Nino; Barengolts, Denis et al. (2009) NMDA receptor phosphorylation at a site affected in schizophrenia controls synaptic and behavioral plasticity. J Neurosci 29:11965-72
Li, Bo; Woo, Ran-Sook; Mei, Lin et al. (2007) The neuregulin-1 receptor erbB4 controls glutamatergic synapse maturation and plasticity. Neuron 54:583-97