Telencephalic GABAergic neurons in the basal ganglia and cerebral cortex have central roles in cognition and emotion. Dysfunction of these neurons contributes to some types of epilepsy, intellectual deficiency, autism and schizophrenia. During development, subpallial progenitors generate most of telencephalic GABAergic neurons, including basal ganglia projections neurons and cortical interneurons6. The Dlx1,2,5&6 homeodomain transcription factors (TF) have central roles for this process7-24. Understanding the genetic circuitry upstream and downstream of the DLX TFs is essential for elucidating the basic mechanisms of telencephalic GABAergic development. To elucidate the genetic circuitry driving the development and function of telencephalic GABAergic progenitors and neurons, we must define the TFs, REs (enhancers and promoters) and the coding regions that they control. We hypothesize that the DLX homeodomain (TF) are at the core of transcriptional circuits, which we call the ?Dlx Pathway?, that regulate the development of most telencephalic GABAergic neurons, including basal ganglia projections neurons and cortical interneurons. We propose experiments aimed at elucidating the network of TFs in the Dlx Pathway that directly regulate genes controlling development of cells generated in the embryonic basal ganglia (ganglionic eminences, GEs). We will use chromatin immunoprecipitation followed by whole genome sequencing (ChIP-Seq) to elucidate in vivo genomic binding sites for TFs upstream and downstream of Dlx1&2 (Aim 1). Analysis of changes in RNA expression in the GEs of Dlx1/2 mutants (Aim 2) will provide evidence for the genes whose expression depends on Dlx function. Histone ChIP-Seq and ATAC- Seq (Aim 3), in conjunction with TF ChIP-Seq, will provide evidence for the locations of regulatory elements (REs; enhancers and promoters) used by Dlx Pathway. Final we will assay RE activity using transgenic methods (Aims 4&5). Elucidating transcription circuits driving telencephalic GABAergic development provides a fundamental framework for understanding the genetic pathways, including the REs, which generate inhibitory neurons. !

Public Health Relevance

Disruption of cerebral cortex and basal ganglia development and function are strongly associated with several major neuropsychiatric disorders, including intellectual deficiency, epilepsy, cerebral palsy, autism and schizophrenia. The experiments proposed in this application aim to elucidate basic mechanisms that underlie normal development of GABAergic neurons of basal ganglia and cerebral cortex. This information will provide a key foundation for understanding the genetic and molecular mechanisms underlying many neuropsychiatric disorders.

National Institute of Health (NIH)
National Institute of Mental Health (NIMH)
Research Project (R01)
Project #
Application #
Study Section
Neurogenesis and Cell Fate Study Section (NCF)
Program Officer
Panchision, David M
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of California San Francisco
Schools of Medicine
San Francisco
United States
Zip Code
Yang, Nan; Chanda, Soham; Marro, Samuele et al. (2017) Generation of pure GABAergic neurons by transcription factor programming. Nat Methods 14:621-628
Sun, Yishan; Pa?ca, Sergiu P; Portmann, Thomas et al. (2016) A deleterious Nav1.1 mutation selectively impairs telencephalic inhibitory neurons derived from Dravet Syndrome patients. Elife 5:
Ypsilanti, Athéna R; Rubenstein, John L R (2016) Transcriptional and epigenetic mechanisms of early cortical development: An examination of how Pax6 coordinates cortical development. J Comp Neurol 524:609-29
Hoch, Renée V; Lindtner, Susan; Price, James D et al. (2015) OTX2 Transcription Factor Controls Regional Patterning within the Medial Ganglionic Eminence and Regional Identity of the Septum. Cell Rep 12:482-94
Golonzhka, Olga; Nord, Alex; Tang, Paul L F et al. (2015) Pbx Regulates Patterning of the Cerebral Cortex in Progenitors and Postmitotic Neurons. Neuron 88:1192-207
Eckler, Matthew J; Nguyen, Ton D; McKenna, William L et al. (2015) Cux2-positive radial glial cells generate diverse subtypes of neocortical projection neurons and macroglia. Neuron 86:1100-1108
Silbereis, John C; Nobuta, Hiroko; Tsai, Hui-Hsin et al. (2014) Olig1 function is required to repress dlx1/2 and interneuron production in Mammalian brain. Neuron 81:574-87
Southwell, Derek G; Nicholas, Cory R; Basbaum, Allan I et al. (2014) Interneurons from embryonic development to cell-based therapy. Science 344:1240622
Guo, Chao; Eckler, Matthew J; McKenna, William L et al. (2013) Fezf2 expression identifies a multipotent progenitor for neocortical projection neurons, astrocytes, and oligodendrocytes. Neuron 80:1167-74
Visel, Axel; Taher, Leila; Girgis, Hani et al. (2013) A high-resolution enhancer atlas of the developing telencephalon. Cell 152:895-908

Showing the most recent 10 out of 88 publications