This project began in 1994 as a NIMH U01 in which we initially completed whole-genome linkage analysis on 437 uniformly ascertained and evaluated Alzheimer's disease families comprising the NIMH AD Genetics Initiative Family Sample (NIMH sample). This led to novel loci chromosomes 9, 10 and 12. In 1998, the U01 was transformed into an R01, and in 2003, became a Merit Award (R37). Since 1998, the project was aimed at the identification and characterization of novel familial AD genes using family-based association analyses. In 2005, we initiated genome-wide association studies (GWAS) using Affymetrix 500K genotyping arrays and in 2008, we reported genome-wide significant results from this screen, focusing on CD33, and ATXN1. In 2009, we reported two rare, pathogenic AD mutations in the a-secretase gene, ADAM10. Over the past three years, we completed additional GWAS on the NIMH sample and another AD family sample (NCRAD), using the Affymetrix 6.0 (~900K single nucleotide polymorphisms [SNPs] and ~900K single copy probes) and Affymetrix 25K Coding SNP genotyping arrays. In addition, we carried out GWAS on four AD clinical-, pathological-, imaging-, and biomarker-based quantitative endophenotype samples. These GWAS data are being analyzed separately and as part of a meta-analysis using several imputed AD case-control GWAS datasets. In addition to the initial description of CD33 as a genome-wide significant AD risk gene, later confirmed independently in case-control samples, we identified SNPs in several other candidate genes exhibiting significant results by meta-analysis (see Preliminary Data). In the renewal of this project, we propose to analyze, validate, and follow-up the results of whole genome sequencing (WGS) of the entire NIMH sample (1510 subjects in 437 AD families) using the Illumina HiSeq 2000 platform. WGS sequencing costs will be covered by the Cure Alzheimer's Fund. We will employ state-of-the-art statistical and bioinformatic approaches to identify functional genomic variants influencing AD risk and time-to-onset.
In Aim 1, we will analyze WGS data from the NIMH sample to identify functional variants that are either linked to Mendelian forms of early-onset AD (EOAD) or associated with risk for late-onset AD (LOAD). We will also carry out various association analyses i.e. gene- based, multi-marker framework, and extreme discordant sib-pair, to identify common variants that influence risk for LOAD.
In Aim 2, we will set out to replicate novel variants discovered in Aim 1 using two independent AD family-based cohorts. We will also impute rare variants and conduct association analyses on four case- control samples (NIA-LOAD, TGEN2, GenADA, and ADNI). We will also sequence candidate loci in African- Americans and Pacific Islanders, and compare our results from AD families to those obtained in various psychiatric disorders.
In Aim 3, we will carry out preliminary functional studies on select functional variants, assessing effects on gene function and expression and AD-related pathogenicity, e.g. Ab metabolism and tauopathy. For promising variants, in vivo validation will be performed in independently funded future studies.

Public Health Relevance

Alzheimer's disease (AD) is the most common cause of dementia in the elderly and poses a huge economic burden on the healthcare system. In this project, we focus on the identification of novel genes underlying risk for AD, using a state-of-the art whole genome sequencing approach in AD pedigrees. Identification and characterization of novel AD genes will provide new therapeutic targets for the prevention and treatment of this devastating disease.

National Institute of Health (NIH)
Research Project (R01)
Project #
Application #
Study Section
Molecular Neurogenetics Study Section (MNG)
Program Officer
Addington, Anjene M
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Massachusetts General Hospital
United States
Zip Code
Bettayeb, Karima; Chang, Jerry C; Luo, Wenjie et al. (2016) δ-COP modulates Aβ peptide formation via retrograde trafficking of APP. Proc Natl Acad Sci U S A 113:5412-7
Bettayeb, Karima; Hooli, Basaraj V; Parrado, Antonio R et al. (2016) Relevance of the COPI complex for Alzheimer's disease progression in vivo. Proc Natl Acad Sci U S A 113:5418-23
Men, Jing; Huang, Yongyang; Solanki, Jitendra et al. (2016) Optical Coherence Tomography for Brain Imaging and Developmental Biology. IEEE J Sel Top Quantum Electron 22:
Alfonso, Stephanie I; Callender, Julia A; Hooli, Basavaraj et al. (2016) Gain-of-function mutations in protein kinase Cα (PKCα) may promote synaptic defects in Alzheimer's disease. Sci Signal 9:ra47
Herold, C; Hooli, B V; Mullin, K et al. (2016) Family-based association analyses of imputed genotypes reveal genome-wide significant association of Alzheimer's disease with OSBPL6, PTPRG, and PDCL3. Mol Psychiatry 21:1608-1612
Park, Suyeon; Lee, Sungyoung; Lee, Young et al. (2015) Adjusting heterogeneous ascertainment bias for genetic association analysis with extended families. BMC Med Genet 16:62
Weissmiller, April M; Natera-Naranjo, Orlangie; Reyna, Sol M et al. (2015) A γ-secretase inhibitor, but not a γ-secretase modulator, induced defects in BDNF axonal trafficking and signaling: evidence for a role for APP. PLoS One 10:e0118379
Alex, Aneesh; Li, Airong; Zeng, Xianxu et al. (2015) A Circadian Clock Gene, Cry, Affects Heart Morphogenesis and Function in Drosophila as Revealed by Optical Coherence Microscopy. PLoS One 10:e0137236
Liu, Qing; Waltz, Shannon; Woodruff, Grace et al. (2014) Effect of potent γ-secretase modulator in human neurons derived from multiple presenilin 1-induced pluripotent stem cell mutant carriers. JAMA Neurol 71:1481-9
Griciuc, Ana; Serrano-Pozo, Alberto; Parrado, Antonio R et al. (2013) Alzheimer's disease risk gene CD33 inhibits microglial uptake of amyloid beta. Neuron 78:631-43

Showing the most recent 10 out of 40 publications