Clathrin-mediated endocytosis (CME) is the major pathway for selective uptake of surface receptors and their bound ligands into cells. As such, CME controls many aspects of cellular homeostasis, including nutrient uptake, the surface expression of ion, sugar and other metabolite transporters, interactions with the immune system, regulation of signaling receptors, regulation of cell adhesion receptors, etc. At the synapse, CME is the major pathway for synaptic vesicle recycling and thus for maintaining neurotransmission. Most, if not all, of the component parts of the clathrin- mediated endocytotic machinery have been identified but the exact of function of few of these are known. The best studied components are the coat proteins, clathrin and adaptor proteins, and the GTPase dynamin. Many of the other parts were identified based on their interactions with these major constituents. We have developed quantitative and complementary in vivo and in vitro assays for endocytic clathrin coated vesicle (CCV) formation and will use these to probe the fundamental mechanisms underlying CME. The in vivo assays utilize total internal reflection fluorescence microscopy coupled with novel tracking software and statistical analyses that allow us to comprehensively and quantitatively analyze clathrin coated pit (CCP) dynamics and the kinetics of CCV formation in living cells. The in vitro assay utilizes supported lipid bilayers with excess membrane reservoir or 'SUPER'templates, which provide a robust and facile assay system for vesicle formation that is amenable to both biochemical analysis and real-time imaging. Using these assays, we will pursue three major aims: 1) To quantitatively define factors that regulate clathrin coated pit initiation and maturation in vivo, including cargo, PI4,52, v-SNAREs and AP2 interactions;2) To define the role of SH3 domain-containing dynamin-1 effectors as regulators of dynamin function in CCV formation in vivo and in vitro;and 3) To reconstitute CCV formation from SUPER templates using purified protein components. By defining the minimum machinery required for CCV formation and establishing a robust, quantitative and physiologically relevant assay for measuring this process we will have established the means to fully understand the mechanistic underpinnings of clathrin-mediated endocytosis. )

Public Health Relevance

Clathrin-mediated endocytosis (CME) is the major pathway for selective uptake of surface receptors and their bound ligands into cells and the major pathway for synaptic vesicle recycling required to maintain neurotransmission. Defects in CME have been linked to many human diseases, including hypercholesterolemia, leukemia and breast cancers, muscle myopathies, ocular and neurodegeneration, and kidney disease. Understanding this fundamental cellular process will provide insight into the pathogenesis of these diseases and provide the necessary foundation for seeking new therapeutic approaches towards their treatment. )

Agency
National Institute of Health (NIH)
Institute
National Institute of Mental Health (NIMH)
Type
Research Project (R01)
Project #
5R01MH061345-13
Application #
8247838
Study Section
Nuclear and Cytoplasmic Structure/Function and Dynamics Study Section (NCSD)
Program Officer
Asanuma, Chiiko
Project Start
2000-06-05
Project End
2012-06-30
Budget Start
2012-02-01
Budget End
2012-06-30
Support Year
13
Fiscal Year
2012
Total Cost
$330,278
Indirect Cost
$178,113
Name
Scripps Research Institute
Department
Type
DUNS #
781613492
City
La Jolla
State
CA
Country
United States
Zip Code
92037
Aguet, Francois; Antonescu, Costin N; Mettlen, Marcel et al. (2013) Advances in analysis of low signal-to-noise images link dynamin and AP2 to the functions of an endocytic checkpoint. Dev Cell 26:279-91
Neumann, Sylvia; Pucadyil, Thomas J; Schmid, Sandra L (2013) Analyzing membrane remodeling and fission using supported bilayers with excess membrane reservoir. Nat Protoc 8:213-22
Neumann, Sylvia; Schmid, Sandra L (2013) Dual role of BAR domain-containing proteins in regulating vesicle release catalyzed by the GTPase, dynamin-2. J Biol Chem 288:25119-28
Antonescu, Costin N; Aguet, Francois; Danuser, Gaudenz et al. (2011) Phosphatidylinositol-(4,5)-bisphosphate regulates clathrin-coated pit initiation, stabilization, and size. Mol Biol Cell 22:2588-600
Liu, Ya-Wen; Lukiyanchuk, Vasyl; Schmid, Sandra L (2011) Common membrane trafficking defects of disease-associated dynamin 2 mutations. Traffic 12:1620-33
Liu, Ya-Wen; Neumann, Sylvia; Ramachandran, Rajesh et al. (2011) Differential curvature sensing and generating activities of dynamin isoforms provide opportunities for tissue-specific regulation. Proc Natl Acad Sci U S A 108:E234-42
Anantharam, Arun; Bittner, Mary A; Aikman, Rachel L et al. (2011) A new role for the dynamin GTPase in the regulation of fusion pore expansion. Mol Biol Cell 22:1907-18
Mettlen, Marcel; Loerke, Dinah; Yarar, Defne et al. (2010) Cargo- and adaptor-specific mechanisms regulate clathrin-mediated endocytosis. J Cell Biol 188:919-33
Antonescu, Costin N; Danuser, Gaudenz; Schmid, Sandra L (2010) Phosphatidic acid plays a regulatory role in clathrin-mediated endocytosis. Mol Biol Cell 21:2944-52
Chappie, Joshua S; Acharya, Sharmistha; Leonard, Marilyn et al. (2010) G domain dimerization controls dynamin's assembly-stimulated GTPase activity. Nature 465:435-40

Showing the most recent 10 out of 20 publications