The activity and subcellular localization of Ca2+/calmodulin(CaM)-dependent protein kinase II (CaMKII) are regulated by Ca2+/CaM binding, autophosphorylation at Thr286 and Thr305/306, and interactions with CaMKII- associated proteins (CaMKAPs). Inhibition of CaMKII, mutation of CaMKII autophosphorylation sites, or blocking CaMKII binding to NMDA receptor (NMDAR) GluN2B (formerly NR2B) subunits disrupts normal LTP at hippocampal glutamatergic synapses. However, at other excitatory synapses CaMKII is important for LTD induction or for synaptic changes independent of kinase activity. The specific molecular processes engaged by CaMKII to induce these disparate changes of synaptic function in different physiological situations remain unclear. The overarching goal of this project is to define mechanisms of CaMKII action toward specific downstream targets that are critical for normal regulation of excitatory synaptic transmission. Our unifying hypothesis is that CaMKII actions are """"""""micro-regulated"""""""" in discrete subcellular compartments by changing the composition of CaMKII complexes with its substrates and other proteins. Thus, the repertoire of downstream CaMKII actions in a specific cellular/physiological context will be dictated by other components of these complexes. In previous funding periods, we made excellent progress characterizing CaMKII complexes containing NMDAR subunits, 21/22 subunits of voltage-gated Ca2+ channels, densin, 1-actinin and/or SAP97, generating 20 primary research publications. Interestingly, these CaMKAPs interact with CaMKII by multiple molecular mechanisms, and also typically interact with other synaptic proteins. Our findings suggest novel mechanisms for precise modulation of CaMKII-dependent actions on key synaptic signaling proteins, as well as for regulated assembly of multi-protein complexes in postsynaptic densities (PSDs). This competing renewal application proposes the use of a combination of biochemical, molecular and electrophysiological approaches in vitro, in heterologous cells, and in neurons/brain slices to test the following specific hypotheses:
Aim 1 : Test the hypothesis that 2 subunits and densin differentially target CaMKII isoforms to regulate L-type voltage-gated Ca2+ channels.
Aim 2 : Test the hypothesis that 1-actinin activates CaMKII to regulate GluN2B- NMDARs and that phospholipids modulate this pathway.
Aim 3 : Test the hypothesis that CaMKII interacts with and phosphorylates specific SAP97 splice variants to regulate AMPARs.
Aim 4 : Test the hypothesis that CaMKII autophosphorylation is modified by CaMKAPs within PSDs, and in turn regulates relevant protein- protein interactions, allowing CaMKII to play a non-catalytic, structural role. These studies will define fundamental mechanisms of physiological control that allow CaMKII to selectively regulate targets critical to different forms of synaptic plasticity, learning and memory.

Public Health Relevance

Normal human behaviors such as learning and memory require precise control of connections (called synapses) between nerve cells in the brain, which are dependent on the activities of many receptor and ion channel proteins. CaMKII is one of the most abundant proteins at the synapse, where it can chemically modify and regulate several different target proteins, such as receptor and ion channel proteins, to elicit different responses depending on physiological demand. By defining mechanisms that allow CaMKII to selectively modify different target proteins, the proposed studies will guide the development of novel approaches to treat many neurodevelopmental, psychiatric and neurological disorders linked to abnormal synaptic functions.

Agency
National Institute of Health (NIH)
Institute
National Institute of Mental Health (NIMH)
Type
Research Project (R01)
Project #
5R01MH063232-14
Application #
8594259
Study Section
Synapses, Cytoskeleton and Trafficking Study Section (SYN)
Program Officer
Asanuma, Chiiko
Project Start
2001-05-15
Project End
2015-12-31
Budget Start
2014-01-01
Budget End
2014-12-31
Support Year
14
Fiscal Year
2014
Total Cost
$448,599
Indirect Cost
$152,714
Name
Vanderbilt University Medical Center
Department
Physiology
Type
Schools of Medicine
DUNS #
004413456
City
Nashville
State
TN
Country
United States
Zip Code
37212
Stephenson, Jason R; Wang, Xiaohan; Perfitt, Tyler L et al. (2017) A Novel Human CAMK2A Mutation Disrupts Dendritic Morphology and Synaptic Transmission, and Causes ASD-Related Behaviors. J Neurosci 37:2216-2233
Wang, Xiaohan; Marks, Christian R; Perfitt, Tyler L et al. (2017) A novel mechanism for Ca2+/calmodulin-dependent protein kinase II targeting to L-type Ca2+ channels that initiates long-range signaling to the nucleus. J Biol Chem 292:17324-17336
Wills, Tiffany A; Baucum 2nd, Anthony J; Holleran, Katherine M et al. (2017) Chronic intermittent alcohol disrupts the GluN2B-associated proteome and specifically regulates group I mGlu receptor-dependent long-term depression. Addict Biol 22:275-290
Wang, Shiyi; Stanika, Ruslan I; Wang, Xiaohan et al. (2017) Densin-180 Controls the Trafficking and Signaling of L-Type Voltage-Gated Cav1.2 Ca2+ Channels at Excitatory Synapses. J Neurosci 37:4679-4691
Tavalin, Steven J; Colbran, Roger J (2017) CaMKII-mediated phosphorylation of GluN2B regulates recombinant NMDA receptor currents in a chloride-dependent manner. Mol Cell Neurosci 79:45-52
Colbran, Roger J (2015) Thematic Minireview Series: Molecular Mechanisms of Synaptic Plasticity. J Biol Chem 290:28594-5
Fosang, Amanda J; Colbran, Roger J (2015) Transparency Is the Key to Quality. J Biol Chem 290:29692-4
Pasek, Johanna G; Wang, Xiaohan; Colbran, Roger J (2015) Differential CaMKII regulation by voltage-gated calcium channels in the striatum. Mol Cell Neurosci 68:234-43
Baucum 2nd, Anthony J; Shonesy, Brian C; Rose, Kristie L et al. (2015) Quantitative proteomics analysis of CaMKII phosphorylation and the CaMKII interactome in the mouse forebrain. ACS Chem Neurosci 6:615-31
Frederick, A L; Yano, H; Trifilieff, P et al. (2015) Evidence against dopamine D1/D2 receptor heteromers. Mol Psychiatry 20:1373-85

Showing the most recent 10 out of 49 publications