Selective agonists of the M1 subtype of muscarinic acetylcholine receptor (mAChR) may provide a novel approach for treatment of both psychosis and cognitive disturbances in patients suffering from schizophrenia and other CNS disorders. Unfortunately, previous efforts to develop highly selective M1 receptor agonists have failed because of the high conservation of the orthosteric ACh binding site across all mAChR subtypes. We have now developed highly selective activators of the M1 receptor that have no activity at any other mAChR subtype. The key to achieving this unprecedented selectivity was to target allosteric sites on M1 rather than developing traditional agonists acting at the highly conserved ACh binding site. These novel M1 allosteric activators have excellent pharmacokinetic properties and brain penetration. Furthermore, preliminary studies suggest that representative compounds have efficacy in animal models that predict antipsychotic and cognition-enhancing effects. Interestingly, structurally distinct M1-selective allosteric activators can differentially regulate coupling of M1 to various signaling pathways. For instance, a compound termed BQCA increases M1 activation of phospholipase C (PLC), calcium mobilization, and recruitment of 2- arrestin proteins to the cell membrane. In contrast, two other M1 allosteric agonists, activate M1 coupling to PLC and calcium mobilization but do not induce 2-arrestin recruitment. In addition, our studies suggest that these agents may differentially regulate coupling of M1 to protein kinase pathways. These surprising findings suggest that distinct M1 allosteric activators could have fundamentally different effects on CNS function and could differ in their potential therapeutic utility. Thus, it will be critical to fully understand the effects of different M1-selective allosteric modulators on coupling of M1 to different signaling pathways and to determine how this relates to electrophysiological effects of these agents and effects in animal models that predict efficacy in treatment of different domains of schizophrenia. We will perform a series of studies in to systematically determine the effects of representative M1 allosteric activators on cell signaling and electrophysiological responses in forebrain neurons important for antipsychotic and cognition-enhancing effects of these agents. In addition, we will determine the behavioral effects of M1 allosteric activators in rodent models that predict antipsychotic and cognition-enhancing effects. These studies will allow us to rigorously test the hypothesis that selective allosteric activators of M1 have effects in animal models that predict efficacy as novel antipsychotic and cognition-enhancing agents. In addition, we will determine whether the electrophysiological and behavioral effects of specific M1 allosteric activators vary depending on the effects of the novel compounds on coupling of M1 to specific cell signaling pathways.

Public Health Relevance

Studies in patients suffering from the schizophrenia suggest that drugs that selectively activate a specific receptor for the neurotransmitter acetylcholine may provide a novel approach for treatment of this debilitating brain disorder. We have discovered new drug like molecules that selectively activate with this neurotransmitter receptor. Studies are proposed to test the hypothesis that these novel molecules have actions that predict efficacy in treatment of schizophrenia.

National Institute of Health (NIH)
National Institute of Mental Health (NIMH)
Research Project (R01)
Project #
Application #
Study Section
Pathophysiological Basis of Mental Disorders and Addictions Study Section (PMDA)
Program Officer
Brady, Linda S
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Vanderbilt University Medical Center
Schools of Medicine
United States
Zip Code
Gentry, Patrick R; Kokubo, Masaya; Bridges, Thomas M et al. (2014) Development of a highly potent, novel M5 positive allosteric modulator (PAM) demonstrating CNS exposure: 1-((1H-indazol-5-yl)sulfoneyl)-N-ethyl-N-(2-(trifluoromethyl)benzyl)piperidine-4-carboxamide (ML380). J Med Chem 57:7804-10
Byun, Nellie E; Grannan, Michael; Bubser, Michael et al. (2014) Antipsychotic drug-like effects of the selective M4 muscarinic acetylcholine receptor positive allosteric modulator VU0152100. Neuropsychopharmacology 39:1578-93
Maltese, Marta; Martella, Giuseppina; Madeo, Graziella et al. (2014) Anticholinergic drugs rescue synaptic plasticity in DYT1 dystonia: role of M1 muscarinic receptors. Mov Disord 29:1655-65
Bubser, Michael; Bridges, Thomas M; Dencker, Ditte et al. (2014) Selective activation of M4 muscarinic acetylcholine receptors reverses MK-801-induced behavioral impairments and enhances associative learning in rodents. ACS Chem Neurosci 5:920-42
Conn, P Jeffrey; Lindsley, Craig W; Meiler, Jens et al. (2014) Opportunities and challenges in the discovery of allosteric modulators of GPCRs for treating CNS disorders. Nat Rev Drug Discov 13:692-708
Foster, Daniel J; Gentry, Patrick R; Lizardi-Ortiz, Jose E et al. (2014) M5 receptor activation produces opposing physiological outcomes in dopamine neurons depending on the receptor's location. J Neurosci 34:3253-62
Nickols, Hilary Highfield; Conn, P Jeffrey (2014) Development of allosteric modulators of GPCRs for treatment of CNS disorders. Neurobiol Dis 61:55-71
Foster, Daniel J; Choi, Derrick L; Conn, P Jeffrey et al. (2014) Activation of M1 and M4 muscarinic receptors as potential treatments for Alzheimer's disease and schizophrenia. Neuropsychiatr Dis Treat 10:183-91
Thomsen, Morgane; Conn, P Jeffrey; Lindsley, Craig et al. (2010) Attenuation of cocaine's reinforcing and discriminative stimulus effects via muscarinic M1 acetylcholine receptor stimulation. J Pharmacol Exp Ther 332:959-69
Marlo, Joy E; Niswender, Colleen M; Days, Emily L et al. (2009) Discovery and characterization of novel allosteric potentiators of M1 muscarinic receptors reveals multiple modes of activity. Mol Pharmacol 75:577-88

Showing the most recent 10 out of 14 publications