Attention-deficit/hyperactivity disorder (ADHD) is a highly prevalent disorder that can cause substantial impairment in family/social relationships and the ability to succeed in school and occupation;yet, fundamental aspects of the neurobiology of ADHD remain poorly understood. Anomalous motor development is a consistent, but infrequently studied characteristic observed with ADHD that can provide insight into the neurologic basis of the disorder. Children with ADHD fail to meet age-norms on timed repetitive and sequential movements and manifest a greater amount of motor overflow than age-matched controls. These findings, which can accurately distinguish ADHD children from normal controls and children with other neuropsychiatric disorders, suggest that ADHD is associated with abnormalities of motor cortex inhibitory systems. Functional magnetic resonance imaging (fMRI) and transcranial magnetic stimulation (TMS) can localize and quantify inhibition within the motor cortex and thus are particularly suited to study motor inhibition in ADHD. We hypothesize that the neuromotor anomalies present in children with ADHD are associated with deficient intracortical and interhemispheric inhibition of the motor cortex. This hypothesis is consistent with studies suggesting that the central deficit of ADHD is a failure to inhibit or delay a behavioral response. Our preliminary studies using both fMRI and TMS suggest that abnormalities of motor cortex inhibition are present in children with ADHD. The overall goal of this project is to investigate the neurologic basis of motor anomalies associated with ADHD. We propose three specific aims. In the first aim we will measure overflow movements using electromyography (EMG) and accelerometry, which will allow us to detect meaningful correlations between overflow measurements and neurophysiologic and imaging data.
The second aim will focus on examining motor cortex inhibition using TMS.
The third aim will assess patterns of fMRI activation during simple finger movements, including activation patterns associated with overflow movements. We will then examine the relationship between abnormalities of cortical inhibition and measures of hyperactivity and inattention. The data from these studies will yield critical insights into the neurobiological basis of ADHD and will also set the stage for future development of more effective therapies for this population.

National Institute of Health (NIH)
National Institute of Mental Health (NIMH)
Research Project (R01)
Project #
Application #
Study Section
Child Psychopathology and Developmental Disabilities Study Section (CPDD)
Program Officer
Wagner, Ann
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Hugo W. Moser Research Institute Kennedy Krieger
United States
Zip Code
Seymour, Karen E; Tang, Xiaoying; Crocetti, Deana et al. (2017) Anomalous subcortical morphology in boys, but not girls, with ADHD compared to typically developing controls and correlates with emotion dysregulation. Psychiatry Res 261:20-28
Di Martino, Adriana; O'Connor, David; Chen, Bosi et al. (2017) Enhancing studies of the connectome in autism using the autism brain imaging data exchange II. Sci Data 4:170010
Martinelli, Mary K; Mostofsky, Stewart H; Rosch, Keri S (2017) Investigating the Impact of Cognitive Load and Motivation on Response Control in Relation to Delay Discounting in Children with ADHD. J Abnorm Child Psychol 45:1339-1353
Patros, Connor H G; Sweeney, Kristie L; Mahone, E Mark et al. (2017) Greater delay discounting among girls, but not boys, with ADHD correlates with cognitive control. Child Neuropsychol :1-21
Sali, Anthony W; Anderson, Brian A; Yantis, Steven et al. (2017) Reduced Value-Driven Attentional Capture Among Children with ADHD Compared to Typically Developing Controls. J Abnorm Child Psychol :
Nebel, Mary Beth; Eloyan, Ani; Nettles, Carrie A et al. (2016) Intrinsic Visual-Motor Synchrony Correlates With Social Deficits in Autism. Biol Psychiatry 79:633-41
Mahone, E Mark; Crocetti, Deana; Tochen, Laura et al. (2016) Anomalous Putamen Volume in Children With Complex Motor Stereotypies. Pediatr Neurol 65:59-63
Barber, Anita D; Pekar, James J; Mostofsky, Stewart H (2016) Reaction time-related activity reflecting periodic, task-specific cognitive control. Behav Brain Res 296:100-108
Mahajan, Rajneesh; Dirlikov, Benjamin; Crocetti, Deana et al. (2016) Motor Circuit Anatomy in Children with Autism Spectrum Disorder With or Without Attention Deficit Hyperactivity Disorder. Autism Res 9:67-81
Dajani, Dina R; Llabre, Maria M; Nebel, Mary Beth et al. (2016) Heterogeneity of executive functions among comorbid neurodevelopmental disorders. Sci Rep 6:36566

Showing the most recent 10 out of 76 publications