An existing NIH-funded contract (CHARTER) supports a multi-site longitudinal study of CNS alterations in a sample of 600 HIV-infected (HIV+) individuals. This sample is representative of infected groups in the communities where they are recruited: most are treated with combination ARVs and a significant proportion are co-infected with HCV. In addition to comprehensive neuromedical and neurobehavioral assessments this study involves annual neuroimaging examinations for assessment of structural brain abnormalities using MR morphometry techniques. Within 149 participants examined in this contract at baseline, the degree of damage in cerebral white matter is associated with disease factors such as CDC classification and the presence of HCV antibodies in serum. The neurocognitive impairment measured in these participants is associated with both increased white matter damage and volume loss in cerebral cortex, and the two factors, which show only modest correlation, appears to contribute independently to severity of neurocognitive impairment. The pattern of the results suggests that damage to the cerebral white matter is an important mediator of HIV-related neurocognitive impairment and may also mediate increases in impairment associated with co-infection with HCV. Multiple lines of evidence suggest that white matter damage and cortical degeneration to some extent reflect distinct pathogenetic mechanisms. The proposed study would take advantage of the existence of the CHARTER longitudinal study to identify 20 individuals at the UCSD site in whom there is evidence of evolving white matter damage (and 10 apparently unaffected individuals with comparable disease characteristics). These targeted individuals would then be studied semiannually with an extended high field (3T) neuroimaging investigation which would include multispectral sMRI, computational morphometry, diffusion tensor imaging (DTI), and chemical shift imaging (CSI). These additional neuroimaging data would be used to address questions about the evolution of white matter damage over time;about the relationship between the white matter damage and the damage to cerebral cortex;and about the role of immune activation and viral levels in mediating this damage.

National Institute of Health (NIH)
National Institute of Mental Health (NIMH)
Research Project (R01)
Project #
Application #
Study Section
Special Emphasis Panel (ZRG1-AARR-A (95))
Program Officer
Stoff, David M
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of California San Diego
Schools of Medicine
La Jolla
United States
Zip Code
Keltner, John R; Fennema-Notestine, Christine; Vaida, Florin et al. (2014) HIV-associated distal neuropathic pain is associated with smaller total cerebral cortical gray matter. J Neurovirol 20:209-18
Grant, Igor; Franklin Jr, Donald R; Deutsch, Reena et al. (2014) Asymptomatic HIV-associated neurocognitive impairment increases risk for symptomatic decline. Neurology 82:2055-62
Archibald, S L; McCutchan, J A; Sanders, C et al. (2014) Brain morphometric correlates of metabolic variables in HIV: the CHARTER study. J Neurovirol 20:603-11
Fennema-Notestine, Christine; Ellis, Ronald J; Archibald, Sarah L et al. (2013) Increases in brain white matter abnormalities and subcortical gray matter are linked to CD4 recovery in HIV infection. J Neurovirol 19:393-401
Jernigan, Terry L; Archibald, Sarah L; Fennema-Notestine, Christine et al. (2011) Clinical factors related to brain structure in HIV: the CHARTER study. J Neurovirol 17:248-57
Heaton, R K; Clifford, D B; Franklin Jr, D R et al. (2010) HIV-associated neurocognitive disorders persist in the era of potent antiretroviral therapy: CHARTER Study. Neurology 75:2087-96
Petersen, R C; Aisen, P S; Beckett, L A et al. (2010) Alzheimer's Disease Neuroimaging Initiative (ADNI): clinical characterization. Neurology 74:201-9
McDonald, C R; McEvoy, L K; Gharapetian, L et al. (2009) Regional rates of neocortical atrophy from normal aging to early Alzheimer disease. Neurology 73:457-65