Assessing the impact of genetic variants on cellular phenotypes like gene expression provide new opportunities for understanding the biology of genomes and disease. By identifying expression and splicing quantitative trait loci (eQTL or sQTL), we can elucidate new mechanisms underlying trait-associated variation and gain new insights into gene regulatory mechanisms and pathways. With the availability of novel technologies and new large datasets we are now in a position to perform high resolution analysis of transcriptomes and elucidate causal cellular mechanisms for phenotypic variability and disease. In the proposed project we aim to do the following:
Specific Aim 1 : We will undertake detailed transcriptome analysis of the GTEx data. We will improve the workflow of transcriptome analysis by deploying novel computational methods. First, we will tackle the problem of identifying transcripts and estimating their abundances. Second, we will deploy a Bayesian approach for comparing transcript distribution within and among populations and tissues to develop a robust catalog of differentially expressed genes.
Specific Aim 2 : We will develop improved statistical methods to discover regulatory variation. Over the past 3-4 years, our collaborative group has developed many tools for mapping genetic variants underlying expression differences among individuals. Here, we will apply these tools to the GTEx data to map eQTL using the high-quality transcriptome feature quantifications from Aim 1. The approaches we will deploy include: (i) haplotype-based methods for mapping of cis eQTL, (ii) improved methods for quantifying Allele Specific Expression (ASE), (iii) Bayesian mapping of trans eQTL using GRNs, and (iv) integrated multi-tissue and multi-population eQTL mapping.
Specific Aim 3 : We will map putatively causal variants that affect gene expression or transcript structure and assess their functional attributes. To understand the molecular bases of human gene regulation, we will create a comprehensive catalog of causal variants influencing expression and their associated genomic features. We will focus on: (i) the study of patterns of chromatin states to define rules for the location and effect of eQTL;and (ii) the interpretation o loss of function variant effects on transcriptomes and individuals.
Specific Aim 4 : We will build quantitative genetic and gene regulatory models of cellular transcript abundance. Our main efforts under this aim will be: (i) to assess patterns of epistasis/penetrance between protein-coding and regulatory variation;and (ii) reconstruct gene regulatory networks. These models will provide biological insights into the causes and consequences of eQTL.

Public Health Relevance

Assessing the impact of genetic variation on gene expression provide new opportunities for understanding the biology of genomes and disease. With the availability of novel technologies and new large datasets we are now in a position to perform high-resolution analysis of gene expression and elucidate causal mechanisms for phenotypic variability and disease. This will likely bring new opportunities for diagnostic and prognostic methodologies and a handle on personalized medicine.

National Institute of Health (NIH)
National Institute of Mental Health (NIMH)
Research Project (R01)
Project #
Application #
Study Section
Special Emphasis Panel (ZRG1-GGG-H (50))
Program Officer
Addington, Anjene M
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of Geneva
Zip Code
Varma, V R; Varma, S; An, Y et al. (2017) Alpha-2 macroglobulin in Alzheimer's disease: a marker of neuronal injury through the RCAN1 pathway. Mol Psychiatry 22:13-23
Saha, Ashis; Kim, Yungil; Gewirtz, Ariel D H et al. (2017) Co-expression networks reveal the tissue-specific regulation of transcription and splicing. Genome Res 27:1843-1858
Tukiainen, Taru; Villani, Alexandra-ChloƩ; Yen, Angela et al. (2017) Landscape of X chromosome inactivation across human tissues. Nature 550:244-248
Pala, Mauro; Zappala, Zachary; Marongiu, Mara et al. (2017) Population- and individual-specific regulatory variation in Sardinia. Nat Genet 49:700-707
Liu, C; Bousman, C A; Pantelis, C et al. (2017) Pathway-wide association study identifies five shared pathways associated with schizophrenia in three ancestral distinct populations. Transl Psychiatry 7:e1037
Yang, Bo; Zhou, Wei; Jiao, Jiao et al. (2017) Protein-altering and regulatory genetic variants near GATA4 implicated in bicuspid aortic valve. Nat Commun 8:15481
Carrat, Gaelle R; Hu, Ming; Nguyen-Tu, Marie-Sophie et al. (2017) Decreased STARD10 Expression Is Associated with Defective Insulin Secretion in Humans and Mice. Am J Hum Genet 100:238-256
Chiang, Colby; Scott, Alexandra J; Davis, Joe R et al. (2017) The impact of structural variation on human gene expression. Nat Genet 49:692-699
Mohammadi, Pejman; Castel, Stephane E; Brown, Andrew A et al. (2017) Quantifying the regulatory effect size of cis-acting genetic variation using allelic fold change. Genome Res 27:1872-1884
Tan, Meng How; Li, Qin; Shanmugam, Raghuvaran et al. (2017) Dynamic landscape and regulation of RNA editing in mammals. Nature 550:249-254

Showing the most recent 10 out of 52 publications