The long-term objective of this project is to understand the relationship between seizures and brain development. During the last period of this project, we established that some types of seizures, in the absence of systemic complications, can damage the immature brain. We also have preliminary evidence that this damage is, in turn, epileptogenic. This application has two goals: first, to determine whether seizure-induced neuronal injury in the immature brain leads to neuronal apoptosis, and to understand its mechanism. Second, to find out whether seizure-induced damage in the immature brain is epileptogenic. We will study the mechanism of neuronal death in the lithum-pilocarpine model of status epilepticus in the immature rat. We will carefully monitor physiological variables such as arterial blood pressure or blood gases, to ascertain that neuronal injury in the that model is the result of the seizures themselves. We will determine the time course of neuronal injury, describe its morphology by electron-microscopy and confocal fluorescesence microscopy in the CA1 pyramids, the inner dentate granule cells, and the large neurons of the dentate hilus; we will determine whether neuronal death is dependent upon protein synthesis; we will look for evidence of early DNA breakdown by restricted endonucleases by the TUNEL method for identify double- stranded DNA breaks in individual cells; and by laddering on agarose gel electrophoresis; we will look for evidence of caspase activation by immunocytochemistry and in Western blots using antibodies against proteolytic fragments cleaved from actin and from poly ADP-ribose polymerase, by using inhibitors of caspases, by using in situ hybridization and Northern blots to detect increased expression of individual caspases. The time course of this phenomena will reveal the biochemical cascade leading to apoptosis in specific cells. We will also use specific inhibitors to study the dependency of most necrotic and apoptotic death of neurons upon the activation of muscarinic cholinergic receptors, of NMDA receptors, and upon the activity of nitric oxide synthase. Second, we will determine whether seizure induced damage in the immature brain is epileptogenic by monitoring seizures in chronic animals subjected to status epilepticus at P15, P21, P28, or as adults. We will chronically administer anticonvulsants after the end of status epilepticus, and study their effects on the development of spontaneous seizures.

Agency
National Institute of Health (NIH)
Institute
National Institute of Neurological Disorders and Stroke (NINDS)
Type
Research Project (R01)
Project #
2R01NS013515-20A1
Application #
2762511
Study Section
Special Emphasis Panel (ZRG1-BDCN-2 (01))
Program Officer
Jacobs, Margaret
Project Start
1978-12-01
Project End
2002-11-30
Budget Start
1999-01-22
Budget End
1999-11-30
Support Year
20
Fiscal Year
1999
Total Cost
Indirect Cost
Name
University of California Los Angeles
Department
Neurology
Type
Schools of Medicine
DUNS #
119132785
City
Los Angeles
State
CA
Country
United States
Zip Code
90095
Thompson, Kerry W; Suchomelova, Lucie; Wasterlain, Claude G (2018) Treatment of early life status epilepticus: What can we learn from animal models? Epilepsia Open 3:169-179
Dingledine, Raymond; Coulter, Douglas A; Fritsch, Brita et al. (2017) Transcriptional profile of hippocampal dentate granule cells in four rat epilepsy models. Sci Data 4:170061
Suchomelova, L; Lopez-Meraz, M L; Niquet, J et al. (2015) Hyperthermia aggravates status epilepticus-induced epileptogenesis and neuronal loss in immature rats. Neuroscience 305:209-24
Wasterlain, Claude G; Naylor, David E; Liu, Hantao et al. (2013) Trafficking of NMDA receptors during status epilepticus: therapeutic implications. Epilepsia 54 Suppl 6:78-80
Naylor, David E; Liu, Hantao; Niquet, Jerome et al. (2013) Rapid surface accumulation of NMDA receptors increases glutamatergic excitation during status epilepticus. Neurobiol Dis 54:225-38
Wasterlain, Claude G; Gloss, David S; Niquet, Jerome et al. (2013) Epileptogenesis in the developing brain. Handb Clin Neurol 111:427-39
Wasterlain, Claude G; Stöhr, Thomas; Matagne, Alain (2011) The acute and chronic effects of the novel anticonvulsant lacosamide in an experimental model of status epilepticus. Epilepsy Res 94:10-7
Wasterlain, Claude G; Baldwin, Roger; Naylor, David E et al. (2011) Rational polytherapy in the treatment of acute seizures and status epilepticus. Epilepsia 52 Suppl 8:70-1
Lopez-Meraz, Maria-Leonor; Wasterlain, Claude G; Rocha, Luisa L et al. (2010) Vulnerability of postnatal hippocampal neurons to seizures varies regionally with their maturational stage. Neurobiol Dis 37:394-402
Lopez-Meraz, Maria-Leonor; Niquet, Jerome; Wasterlain, Claude G (2010) Distinct caspase pathways mediate necrosis and apoptosis in subpopulations of hippocampal neurons after status epilepticus. Epilepsia 51 Suppl 3:56-60

Showing the most recent 10 out of 88 publications