Multiple sclerosis (MS) is a disease characterized by inflammation and demyelination in central nervous system white matter. Indirect evidence suggests that the immune system plays a role in the pathogenesis of MS, and data from family all twin studies indicate that genetic factors are important determinants of MS susceptibility This study will attempt to establish the chromosomal location of the MS susceptibility gene or genes by linkage analysis using the affected sib pair method. Forty families, each with two siblings affected with typical MS, will be studied initially, and it is anticipated that accrual of an additional 20 families per year will be possible. Limphoblastoid lines will be established from all individuals. Using DNA polymorphisms, affected siblings will be studied for co-inheritance of candidate susceptibility genes including the alpha, beta and gamma chain genes of the T-cell receptor, and traditional typing methods will bemused to assess inheritance of HLA and immunoglobulin genes. Restriction fragment length polymorphisms will bemused to study other genes encoding proteins important for T-cell function, oncogenies, and myelin- related genes. Should no candidate genomic region: be identified the entire genes will be searched for markers linked to MS susceptibility, with emphasis placed on the use of highly polymorphic, appropriately spaced probes. These probes will include those detecting variable number tandem repeat"""""""" sequences. Identification of a genetic marker linked to MS susceptibility should provide a direct approach to the characterization of the susceptibility gene and to an understanding of its role in the pathogenesis of MS.

Agency
National Institute of Health (NIH)
Institute
National Institute of Neurological Disorders and Stroke (NINDS)
Type
Research Project (R01)
Project #
5R01NS026799-02
Application #
3412844
Study Section
Neurology C Study Section (NEUC)
Project Start
1988-12-01
Project End
1991-11-30
Budget Start
1989-12-01
Budget End
1990-11-30
Support Year
2
Fiscal Year
1990
Total Cost
Indirect Cost
Name
Massachusetts General Hospital
Department
Type
DUNS #
City
Boston
State
MA
Country
United States
Zip Code
02199
Bove, Riley; Chitnis, Tanuja; Cree, Bruce Ac et al. (2018) SUMMIT (Serially Unified Multicenter Multiple Sclerosis Investigation): creating a repository of deeply phenotyped contemporary multiple sclerosis cohorts. Mult Scler 24:1485-1498
Mack, Steven J; Udell, Julia; Cohen, Franziska et al. (2018) High resolution HLA analysis reveals independent class I haplotypes and amino-acid motifs protective for multiple sclerosis. Genes Immun :
Jia, Xiaoming; Madireddy, Lohith; Caillier, Stacy et al. (2018) Genome sequencing uncovers phenocopies in primary progressive multiple sclerosis. Ann Neurol 84:51-63
Graves, Jennifer S; Henry, Roland G; Cree, Bruce A C et al. (2018) Ovarian aging is associated with gray matter volume and disability in women with MS. Neurology 90:e254-e260
Azevedo, Christina J; Cen, Steven Y; Khadka, Sankalpa et al. (2018) Thalamic atrophy in multiple sclerosis: A magnetic resonance imaging marker of neurodegeneration throughout disease. Ann Neurol 83:223-234
Canto, Ester; Isobe, Noriko; Didonna, Alessandro et al. (2018) Aberrant STAT phosphorylation signaling in peripheral blood mononuclear cells from multiple sclerosis patients. J Neuroinflammation 15:72
Greenfield, Ariele L; Hauser, Stephen L (2018) B-cell Therapy for Multiple Sclerosis: Entering an era. Ann Neurol 83:13-26
Creary, Lisa E; Mallempati, Kalyan C; Gangavarapu, Sridevi et al. (2018) Deconstruction of HLA-DRB1*04:01:01 and HLA-DRB1*15:01:01 class II haplotypes using next-generation sequencing in European-Americans with multiple sclerosis. Mult Scler :1352458518770019
International Multiple Sclerosis Genetics Consortium. Electronic address: chris.cotsapas@yale.edu; International Multiple Sclerosis Genetics Consortium (2018) Low-Frequency and Rare-Coding Variation Contributes to Multiple Sclerosis Risk. Cell 175:1679-1687.e7
Gelfand, Jeffrey M; Cree, Bruce A C; Hauser, Stephen L (2017) Ocrelizumab and Other CD20+ B-Cell-Depleting Therapies in Multiple Sclerosis. Neurotherapeutics 14:835-841

Showing the most recent 10 out of 92 publications