Voltage-gated sodium (NaV) channels are heteromultimeric integral membrane proteins that are responsible for the initial phase of the action potential in most excitable cells. A variety of inherited disorders affecting skeletal muscle contraction (hyperkalemic periodic paralysis, paramyotonia congenita, K+-aggravated myotonia), cardiac excitability (congenital long QT syndrome, idiopathic ventricular fibrillation, familial conduction system disease) and certain forms of epilepsy have been associated with mutations in human NaV channel genes. This proposal is a competing renewal of R01-NS32387 that for 17 years has funded our efforts to elucidate the molecular genetic, pathophysiologic and pharmacologic mechanisms of human sodium "channelopathies". We propose to continue our highly successful research program with a focus on epilepsies associated with mutant brain NaV channels.
In Specific Aim 1, we will elucidate the functional consequences of novel epilepsy-associated SCN1A (encoding NaV1.1) mutations with a focus on two unstudied mechanistic aspects of mutant channel dysfunction. First, we will investigate the functional consequences of a subset of mutations within a region of the NaV1.1 C-terminus having conserved Ca2+/calmodulin regulatory elements to test the hypothesis that these alleles affect channel function by altering the response of the channel to internal Ca2+ signaling. Second, we will investigate whether alternative splicing influences the functional consequences of SCN1A mutations associated with divergent clinical phenotypes.
In Specific Aim 2, we will elucidate the neurophysiological basis for strain- dependent epilepsy severity using two mechanistically distinct mouse models of epilepsy caused by mutant NaV channels: 1) transgenic mice expressing a gain-of-function Scn2a mutation (Q54 mice);and 2) heterozygous Scn1a knock out (Scn1a+/-) mice, a model of human Dravet syndrome. Both models exhibit strong strain-dependence of epilepsy severity and impaired survival. Strain-dependence of murine phenotypes mimics the variable penetrance and disease expression characteristic of human monogenic epilepsies including those caused by mutant NaV channels. Ongoing efforts to map genomic loci responsible for this phenomenon have identified a new candidate gene for seizure susceptibility using Q54 mice. By integrating existing and future genomic data on modifiers of epilepsy with information about the neurophysiological correlates of phenotype strain-dependence, we expect to generate important new insights into mechanisms responsible for the influence of genetic modifiers relevant to human idiopathic epilepsy, and to identify molecular pathways that could be therapeutic targets.

Public Health Relevance

Epilepsy is a common neurological disorder affecting nearly 1% of the U.S. population. Understanding how genetic factors contribute to the pathogenesis of epilepsy has great importance for diagnosis and treatment of this condition. This grant funds studies of epilepsies caused by genetic mutations in sodium channels, a type of protein important for generating electrical impulses in the brain.

Agency
National Institute of Health (NIH)
Institute
National Institute of Neurological Disorders and Stroke (NINDS)
Type
Research Project (R01)
Project #
5R01NS032387-20
Application #
8460535
Study Section
Clinical Neuroplasticity and Neurotransmitters Study Section (CNNT)
Program Officer
Stewart, Randall R
Project Start
1994-01-01
Project End
2016-04-30
Budget Start
2013-05-01
Budget End
2014-04-30
Support Year
20
Fiscal Year
2013
Total Cost
$413,609
Indirect Cost
$148,475
Name
Vanderbilt University Medical Center
Department
Internal Medicine/Medicine
Type
Schools of Medicine
DUNS #
004413456
City
Nashville
State
TN
Country
United States
Zip Code
37212
George Jr, Alfred L (2014) Recent genetic discoveries implicating ion channels in human cardiovascular diseases. Curr Opin Pharmacol 15:47-52
Mistry, Akshitkumar M; Thompson, Christopher H; Miller, Alison R et al. (2014) Strain- and age-dependent hippocampal neuron sodium currents correlate with epilepsy severity in Dravet syndrome mice. Neurobiol Dis 65:1-11
Torkamani, Ali; Bersell, Kevin; Jorge, Benjamin S et al. (2014) De novo KCNB1 mutations in epileptic encephalopathy. Ann Neurol 76:529-40
George Jr, Alfred L (2014) Lessons learned from genetic testing for channelopathies. Lancet Neurol 13:1068-70
Anderson, Lyndsey L; Thompson, Christopher H; Hawkins, Nicole A et al. (2014) Antiepileptic activity of preferential inhibitors of persistent sodium current. Epilepsia 55:1274-83
Vanoye, Carlos G; Gurnett, Christina A; Holland, Katherine D et al. (2014) Novel SCN3A variants associated with focal epilepsy in children. Neurobiol Dis 62:313-22
Vanoye, Carlos G; Kunic, Jennifer D; Ehring, George R et al. (2013) Mechanism of sodium channel NaV1.9 potentiation by G-protein signaling. J Gen Physiol 141:193-202
Jorge, Benjamin S; Campbell, Courtney M; Miller, Alison R et al. (2011) Voltage-gated potassium channel KCNV2 (Kv8.2) contributes to epilepsy susceptibility. Proc Natl Acad Sci U S A 108:5443-8
Volkers, Linda; Kahlig, Kristopher M; Verbeek, Nienke E et al. (2011) Nav 1.1 dysfunction in genetic epilepsy with febrile seizures-plus or Dravet syndrome. Eur J Neurosci 34:1268-75
Thompson, Christopher H; Kahlig, Kristopher M; George Jr, Alfred L (2011) SCN1A splice variants exhibit divergent sensitivity to commonly used antiepileptic drugs. Epilepsia 52:1000-9

Showing the most recent 10 out of 63 publications