I hypothesize that Fgf signaling from the rostral patterning center plays a major role in governing growth and patterning of the rostral telencephalon, including the frontal cortex. The experiments described below are designed to identify the molecular mechanisms that control: 1) Fgf expression and signaling;2) how Fgfs, and other signals, regulate expression of enhancers that drive expression in the developing frontal cortex;3) morphogenesis of the rostral telencephalon (frontal cortex and septum). The proposal has four Aims:
Aim I. Characterize the fates of cells in the rostral patterning center.
Aim II. Identify mechanisms that regulate gene expression in the rostral patterning center.
Aim III. Investigate the regulation of frontal cortex patterning: identify and characterize enhancers that define subdivisions of the frontal cortex.
Aim I V. Analyze roles of Fgf signal regulation in the rostral patterning center: analysis of Sprouty1, 2 and 1/2 mutants. I believe that these experiments will provide a firm foundation for elucidating the genetic, molecular, and cellular mechanisms that control development of the cerebral cortex and that may underlie some Human neurodevelopmental disorders such as Autism, Schizophrenia, and Epilepsy.

Public Health Relevance

Disruption of cerebral cortex development and function is strongly associated with several major neuropsychiatric disorders, including autism and schizophrenia. The experiments proposed in this application aim to elucidate basic mechanisms that underlie normal development of prefrontal cortex, an integral region subserving higher cognitive function. This information will provide a key foundation for understanding the genetic and molecular mechanisms underlying many psychiatric disorders.

Agency
National Institute of Health (NIH)
Institute
National Institute of Neurological Disorders and Stroke (NINDS)
Type
Research Project (R01)
Project #
5R01NS034661-16
Application #
8415944
Study Section
Neurogenesis and Cell Fate Study Section (NCF)
Program Officer
Riddle, Robert D
Project Start
1996-09-01
Project End
2016-01-31
Budget Start
2013-02-01
Budget End
2014-01-31
Support Year
16
Fiscal Year
2013
Total Cost
$326,140
Indirect Cost
$115,046
Name
University of California San Francisco
Department
Psychiatry
Type
Schools of Medicine
DUNS #
094878337
City
San Francisco
State
CA
Country
United States
Zip Code
94143
Ypsilanti, Athéna R; Rubenstein, John L R (2016) Transcriptional and epigenetic mechanisms of early cortical development: An examination of how Pax6 coordinates cortical development. J Comp Neurol 524:609-29
Notwell, James H; Heavner, Whitney E; Darbandi, Siavash Fazel et al. (2016) TBR1 regulates autism risk genes in the developing neocortex. Genome Res 26:1013-22
Gobius, Ilan; Morcom, Laura; Suárez, Rodrigo et al. (2016) Astroglial-Mediated Remodeling of the Interhemispheric Midline Is Required for the Formation of the Corpus Callosum. Cell Rep 17:735-747
Parchem, Ronald J; Moore, Nicole; Fish, Jennifer L et al. (2015) miR-302 Is Required for Timing of Neural Differentiation, Neural Tube Closure, and Embryonic Viability. Cell Rep 12:760-73
Hoch, Renée V; Lindtner, Susan; Price, James D et al. (2015) OTX2 Transcription Factor Controls Regional Patterning within the Medial Ganglionic Eminence and Regional Identity of the Septum. Cell Rep 12:482-94
Hoch, Renée V; Clarke, Jeffrey A; Rubenstein, John L R (2015) Fgf signaling controls the telencephalic distribution of Fgf-expressing progenitors generated in the rostral patterning center. Neural Dev 10:8
Prochazka, Jan; Prochazkova, Michaela; Du, Wen et al. (2015) Migration of Founder Epithelial Cells Drives Proper Molar Tooth Positioning and Morphogenesis. Dev Cell 35:713-24
Golonzhka, Olga; Nord, Alex; Tang, Paul L F et al. (2015) Pbx Regulates Patterning of the Cerebral Cortex in Progenitors and Postmitotic Neurons. Neuron 88:1192-207
Eckler, Matthew J; Nguyen, Ton D; McKenna, William L et al. (2015) Cux2-positive radial glial cells generate diverse subtypes of neocortical projection neurons and macroglia. Neuron 86:1100-8
Nord, Alex S; Pattabiraman, Kartik; Visel, Axel et al. (2015) Genomic perspectives of transcriptional regulation in forebrain development. Neuron 85:27-47

Showing the most recent 10 out of 56 publications