More than any other species, humans have evolved a remarkable ability to manipulate the physical environment with their hands, resulting in an extraordinary transformation of our culture and our planet. This ability co-evolved with an enormous expansion of the neocortex and an increase in the number of areas of the cortex associated with hand use and hand-eye coordination. Although manual abilities in non-human primates cannot match those of humans, they are nonetheless impressive and rely on similar brain mechanisms. Indeed, most of posterior parietal cortex in both human and non-human primates comprise a network that includes areas 5 and the anterior intraparietal area (AIP), and is devoted to reaching, grasping, manipulation and bimanual coordination, as well as transforming sensory information into a coordinate system in which these actions can be initiated. Three overarching goals of the present proposal are: to assess the role of areas 5 and AIP in executing three well-defined tasks that require a monkey to perform natural (although complex) manual and bimanual behaviors under both visual and non-visual guidance. This will be accomplished by permanently lesioning areas 5 or AIP in different animals and examining the resulting behavioral deficits that arise following lesions to these fields. The second goal is to determine if spared areas in the network that generates complex manual behaviors can compensate for permanent loss of a cortical field. This will be accomplished by utilizing a microfluidic cooling device to reversibly deactivate areas 2 and AIP in the animals with area 5 lesions, or deactivate areas 2 and 5 in the animals with AIP lesions. The final goal is to examine the coordinated activities of areas 5 and AIP for generating complex manual behaviors by rapidly and reversibly deactivating area 5, AIP or 5+AIP ipsilaterally and bilaterally in the same animal and observing resulting behavior. In all cases, functional inputs of the deactivated region will be determined. Our lesions and reversible deactivations will be quantified using a combination of thermal recordings, electrophysiological, behavioral indications, and 3D stereological data reconstructions. These studies build on our previous data on behavioral and cortical plasticity following lesions to posterior parietal cortex. Our proposed studies will define the coordinated role of areas 5 and AIP in normal cortical circuits as well as their capacity to compensate for restricted posterior parietal lesions.

Public Health Relevance

Humans are highly dexterous animals, and bimanual dexterity is critical for even the most rudimentary tasks that humans perform daily. The importance of these abilities is particularly marked when parietal cortical areas that lie at the core of these abilities are lost due to stroke or lesions, and severe deficits such as optic ataxias, dystonias, choreas, and neglect occur. The proposed studies will examine posterior parietal areas involved in manual behaviors, and the behavioral deficits that arise when these areas are lesioned. We will also determine the extent of behavioral recovery and the cortical plasticity that underlies this recovery following progressively larger virtual lesions to posterior parietal cortex.

Agency
National Institute of Health (NIH)
Institute
National Institute of Neurological Disorders and Stroke (NINDS)
Type
Research Project (R01)
Project #
5R01NS035103-15
Application #
8255555
Study Section
Somatosensory and Chemosensory Systems Study Section (SCS)
Program Officer
Gnadt, James W
Project Start
1997-05-01
Project End
2015-04-30
Budget Start
2012-05-01
Budget End
2013-04-30
Support Year
15
Fiscal Year
2012
Total Cost
$323,731
Indirect Cost
$109,356
Name
University of California Davis
Department
Neurosciences
Type
Schools of Arts and Sciences
DUNS #
047120084
City
Davis
State
CA
Country
United States
Zip Code
95618
Goldring, Adam B; Cooke, Dylan F; Baldwin, Mary K L et al. (2014) Reversible deactivation of higher-order posterior parietal areas. II. Alterations in response properties of neurons in areas 1 and 2. J Neurophysiol 112:2545-60
Cooke, Dylan F; Goldring, Adam B; Baldwin, Mary K L et al. (2014) Reversible deactivation of higher-order posterior parietal areas. I. Alterations of receptive field characteristics in early stages of neocortical processing. J Neurophysiol 112:2529-44
Campi, Katharine L; Collins, Christine E; Todd, William D et al. (2011) Comparison of area 17 cellular composition in laboratory and wild-caught rats including diurnal and nocturnal species. Brain Behav Evol 77:116-30
Krubitzer, Leah; Campi, Katharine L; Cooke, Dylan F (2011) All rodents are not the same: a modern synthesis of cortical organization. Brain Behav Evol 78:51-93
Campi, Katharine L; Krubitzer, Leah (2010) Comparative studies of diurnal and nocturnal rodents: differences in lifestyle result in alterations in cortical field size and number. J Comp Neurol 518:4491-512
Zumer, Johanna M; Nagarajan, Srikantan S; Krubitzer, Leah A et al. (2010) MEG in the macaque monkey and human: distinguishing cortical fields in space and time. Brain Res 1345:110-24
Campi, Katharine L; Bales, Karen L; Grunewald, Rebecca et al. (2010) Connections of auditory and visual cortex in the prairie vole (Microtus ochrogaster): evidence for multisensory processing in primary sensory areas. Cereb Cortex 20:89-108
Padberg, Jeffrey; Recanzone, Gregg; Engle, James et al. (2010) Lesions in posterior parietal area 5 in monkeys result in rapid behavioral and cortical plasticity. J Neurosci 30:12918-35
Krubitzer, Leah (2009) In search of a unifying theory of complex brain evolution. Ann N Y Acad Sci 1156:44-67
Zhu, Zhao; Zumer, Johanna M; Lowenthal, Marianne E et al. (2009) The relationship between magnetic and electrophysiological responses to complex tactile stimuli. BMC Neurosci 10:4

Showing the most recent 10 out of 41 publications