This is a revised application to renew our program of research on neurofilaments, which are the intermediate filaments of neurons. Neurofilaments are the most abundant structure in large axons and their principal function is to increase axonal caliber, which is a critical determinant of axonal conduction velocity. Neurofilaments are also of clinical interest because neurofilament protein mutations can cause peripheral neuropathy and because neurofilaments accumulate abnormally in many neurodegenerative diseases. Though neurofilaments are structural components of axons, we have demonstrated that they are also cargoes of axonal transport. The filaments move rapidly but the overall rate is slow because they spend most of their time pausing. Studies on laboratory animals have shown that neurofilament accumulations can be caused by an impairment of neurofilament transport. Thus our long-term goal is to understand the mechanism of neurofilament transport and how it is regulated in health and disease. In the past few years we have discovered two remarkable behaviors for neurofilaments, which is that they can lengthen by fusing end-to-end and that they can also be shortened by a severing mechanism. We are excited about these findings because they suggest a novel mechanism for the regulation of neurofilament length that has implications for the regulation of neurofilament transport as well as intermediate filament dynamics in other cell types. We have developed tools and strategies to analyze the mechanism of neurofilament severing and the influence of neurofilament length on neurofilament transport in axons, and we have also obtained evidence that neurofilament motors may form special associations with the leading ends of these polymers. The current proposal builds on this progress to address three aims:
In Aim 1 we will test the hypothesis that neurofilament severing is a robust and efficient phenomenon in neurons and we will test a specific hypothesis for the severing mechanism. These experiments will establish the prevalence of neurofilament severing, which is a novel phenomenon not previously described for intermediate filaments, and they will elucidate a novel mechanism for the regulation of neurofilament length.
In Aim 2 we will test the hypothesis that motor proteins form special attachments with the leading ends of neurofilaments. These experiments will identify a novel mechanism for the interaction of motors with intermediate filaments that has intriguing implications for the mechanism and regulation of the movement of these unique intracellular cargoes.
In Aim 3 we will test the hypothesis that neurofilament transport is regulated by neurofilament length. These experiments will define a novel mechanism for the regulation of neurofilament transport and they will establish the functional significance of neurofilament severing and annealing in axons. Overall this project will elucidate novel aspects of neurofilament dynamics in axons that may represent targets for future therapeutic intervention to alleviate neurofilament accumulations or alterations in disease.

Public Health Relevance

Neurofilaments are important structural components of the cytoplasm of nerve cells and their assembly and/or intracellular transport is disrupted in a wide range of debilitating neurological disorders including amyotrophic lateral sclerosis, Alzheimer's disease, and Charcot-Marie-Tooth disease. Our long-term goal is to understand the molecular mechanisms of neurofilament assembly and transport in nerve cells. We believe that this knowledge may lead to the development of therapeutic strategies that target neurofilament assembly and/or transport to delay or alleviate the progression of these tragic diseases.

National Institute of Health (NIH)
National Institute of Neurological Disorders and Stroke (NINDS)
Research Project (R01)
Project #
Application #
Study Section
Special Emphasis Panel (ZRG1)
Program Officer
Gubitz, Amelie
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Ohio State University
Schools of Medicine
United States
Zip Code
Uchida, Atsuko; Monsma, Paula C; Fenn, J Daniel et al. (2016) Live-cell imaging of neurofilament transport in cultured neurons. Methods Cell Biol 131:21-90
Cheng, Chunming; Ru, Peng; Geng, Feng et al. (2015) Glucose-Mediated N-glycosylation of SCAP Is Essential for SREBP-1 Activation and Tumor Growth. Cancer Cell 28:569-81
Xue, Chuan; Shtylla, Blerta; Brown, Anthony (2015) A Stochastic Multiscale Model That Explains the Segregation of Axonal Microtubules and Neurofilaments in Neurological Diseases. PLoS Comput Biol 11:e1004406
Monsma, Paula C; Li, Yinyun; Fenn, J Daniel et al. (2014) Local regulation of neurofilament transport by myelinating cells. J Neurosci 34:2979-88
Brown, Anthony; Jung, Peter (2013) A critical reevaluation of the stationary axonal cytoskeleton hypothesis. Cytoskeleton (Hoboken) 70:1-11
Uchida, Atsuko; Çolakoğlu, Gülsen; Wang, Lina et al. (2013) Severing and end-to-end annealing of neurofilaments in neurons. Proc Natl Acad Sci U S A 110:E2696-705
Monsma, Paula C; Brown, Anthony (2012) FluoroMyelinýýý Red is a bright, photostable and non-toxic fluorescent stain for live imaging of myelin. J Neurosci Methods 209:344-50
Taylor, Nicholas J; Wang, Lina; Brown, Anthony (2012) Neurofilaments are flexible polymers that often fold and unfold, but they move in a fully extended configuration. Cytoskeleton (Hoboken) 69:535-44
Li, Yinyun; Jung, Peter; Brown, Anthony (2012) Axonal transport of neurofilaments: a single population of intermittently moving polymers. J Neurosci 32:746-58
Yuan, Liang; Zheng, Yuan F; Zhu, Junda et al. (2012) Object tracking with particle filtering in fluorescence microscopy images: application to the motion of neurofilaments in axons. IEEE Trans Med Imaging 31:117-30

Showing the most recent 10 out of 20 publications