The most common dominantly inherited ataxia, Spinocerebellar Ataxia Type 3 (SCA3) is also one of nine neurodegenerative diseases caused by polyglutamine expansion. Although polyglutamine diseases share common features centered on protein misfolding, it is increasingly clear that the pathogenesis of SCA3 and other polyglutamine diseases depends greatly on the specific protein context in which the expansion occurs. The studies proposed here extend our longstanding efforts to understand both the disease mechanisms underlying SCA3 and the normal and disease-related functions of the SCA3 disease protein, a de-ubiquitinating enzyme called ataxin-3. The four proposed aims will investigate key unanswered questions in SCA3 and establish important new model systems.
Aim 1 will test whether ataxin-3 normally suppresses polyglutamine neurodegeneration by virtue of its activity as a ubiquitin chain editing enzyme and whether polyglutamine expansion in ataxin-3 alters this activity.
Aim 2 will address structure-function relationships for this apparently unique enzyme, building on our recent discovery that mono-ubiquitination of ataxin-3 directly enhances its enzymatic activity.
Aim 3 will define the basis of early electrophysiologic changes in the cerebellum of SCA3 transgenic mice and test whether these changes can be modified by channel modulators. Finally, Aim 4 will complete our development of SCA3 knock-in mice, bringing to the research field a genetically precise mouse model of SCA3 that is clearly needed. Together these studies are expected to provide new understanding of the biochemical and cellular processes by which SCA3 occurs and identify potential routes to therapy for this fatal neurodegenerative disease.

Public Health Relevance

Spinocerebellar ataxia type 3 is the most common dominantly inherited ataxia and one of nine diseases caused by polyglutamine expansion. This grant will explore the basis of SCA3 in order that we can ultimately develop therapies for this fatal disease based on a better understanding of disease mechanisms.

National Institute of Health (NIH)
National Institute of Neurological Disorders and Stroke (NINDS)
Research Project (R01)
Project #
Application #
Study Section
Cell Death in Neurodegeneration Study Section (CDIN)
Program Officer
Gwinn, Katrina
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of Michigan Ann Arbor
Schools of Medicine
Ann Arbor
United States
Zip Code
Rüb, Udo; Hentschel, Matthias; Stratmann, Katharina et al. (2014) Huntington's disease (HD): degeneration of select nuclei, widespread occurrence of neuronal nuclear and axonal inclusions in the brainstem. Brain Pathol 24:247-60
Seki, Takahiro; Gong, Lijie; Williams, Aislinn J et al. (2013) JosD1, a membrane-targeted deubiquitinating enzyme, is activated by ubiquitination and regulates membrane dynamics, cell motility, and endocytosis. J Biol Chem 288:17145-55
Todd, Peter K; Oh, Seok Yoon; Krans, Amy et al. (2013) CGG repeat-associated translation mediates neurodegeneration in fragile X tremor ataxia syndrome. Neuron 78:440-55
Scaglione, Kenneth Matthew; Basrur, Venkatesha; Ashraf, Naila S et al. (2013) The ubiquitin-conjugating enzyme (E2) Ube2w ubiquitinates the N terminus of substrates. J Biol Chem 288:18784-8
do Carmo Costa, Maria; Paulson, Henry L (2013) New hope for therapy in neurodegenerative diseases. Cell Res 23:1159-60
Rub, Udo; Schols, Ludger; Paulson, Henry et al. (2013) Clinical features, neurogenetics and neuropathology of the polyglutamine spinocerebellar ataxias type 1, 2, 3, 6 and 7. Prog Neurobiol 104:38-66
Laco, Mario N; Oliveira, Catarina R; Paulson, Henry L et al. (2012) Compromised mitochondrial complex II in models of Machado-Joseph disease. Biochim Biophys Acta 1822:139-49
Paulson, Henry (2012) Machado-Joseph disease/spinocerebellar ataxia type 3. Handb Clin Neurol 103:437-49
Costa, Maria do Carmo; Paulson, Henry L (2012) Toward understanding Machado-Joseph disease. Prog Neurobiol 97:239-57
Scaglione, K Matthew; Zavodszky, Eszter; Todi, Sokol V et al. (2011) Ube2w and ataxin-3 coordinately regulate the ubiquitin ligase CHIP. Mol Cell 43:599-612

Showing the most recent 10 out of 35 publications