Synapses are fundamental to neuronal communication. As most clearly demonstrated in the CA1 field of rodent hippocampus, synaptic efficacy can vary over time. This synaptic modulation underlies many aspects of higher brain function. Its dysfunction is implicated in developmental disorders and certain types of epilepsy, and may be important for a variety of neuropsychiatric diseases. It is now generally agreed that proteins lying within the postsynaptic density (PSD) play a key role in regulating synaptic efficacy, but the organization of these proteins within the PSD remains largely unknown. Elucidating the supramolecular architecture of the PSD is the long-term goal of this project. Current evidence suggests that each NMDA receptor combines with numerous signaling, adaptor, and cytoskeletal proteins to form individual semi-autonomous signaling """"""""modules,"""""""" but these are now understood only as biochemical abstractions. The proposed research combines immunogold EM with high-resolution electron tomography to study the NMDAR module as an organized physical structure, determining its size and shape, and examining its internal organization. It also explores the organization of these modules into larger domains within the PSD, and investigates the relationship of the PSD to the cytoskeleton.
Specific Aim 1 determines the morphology of NMDAR signaling modules;
Specific Aim 2 elucidates the internal organization of NMDAR modules, using immunogold mapping to characterize the laminar organization of four major proteins within a module;
Specific Aim 3 examines the distribution of NMDAR modules along the synaptic apposition;
and Specific Aim 4 investigates contacts between the PSD and the actin cytoskeleton, and the organization of actin filaments within the spine. This research proposal addresses the physical organization of molecular signaling pathways at synapses in the hippocampus, focusing on proteins associated with an especially important type of neurotransmitter receptor, the NMDA receptor. Successful completion of this work will improve our understanding of synaptic mechanisms in the brain, will provide new clues regarding fundamental processes that underlie learning and memory, and may help understand the causes of a variety of neurological, developmental, and psychiatric disorders.

National Institute of Health (NIH)
National Institute of Neurological Disorders and Stroke (NINDS)
Research Project (R01)
Project #
Application #
Study Section
Synapses, Cytoskeleton and Trafficking Study Section (SYN)
Program Officer
Talley, Edmund M
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of North Carolina Chapel Hill
Schools of Medicine
Chapel Hill
United States
Zip Code
Wang, Xiaoming; Bey, Alexandra L; Katz, Brittany M et al. (2016) Altered mGluR5-Homer scaffolds and corticostriatal connectivity in a Shank3 complete knockout model of autism. Nat Commun 7:11459
Carstens, Kelly E; Phillips, Mary L; Pozzo-Miller, Lucas et al. (2016) Perineuronal Nets Suppress Plasticity of Excitatory Synapses on CA2 Pyramidal Neurons. J Neurosci 36:6312-20
Dosemeci, Ayse; Weinberg, Richard J; Reese, Thomas S et al. (2016) The Postsynaptic Density: There Is More than Meets the Eye. Front Synaptic Neurosci 8:23
Judson, Matthew C; Wallace, Michael L; Sidorov, Michael S et al. (2016) GABAergic Neuron-Specific Loss of Ube3a Causes Angelman Syndrome-Like EEG Abnormalities and Enhances Seizure Susceptibility. Neuron 90:56-69
Kim, Il Hwan; Rossi, Mark A; Aryal, Dipendra K et al. (2015) Spine pruning drives antipsychotic-sensitive locomotion via circuit control of striatal dopamine. Nat Neurosci 18:883-91
Burette, Alain; Collman, Forrest; Micheva, Kristina D et al. (2015) Knowing a synapse when you see one. Front Neuroanat 9:100
Collman, Forrest; Buchanan, JoAnn; Phend, Kristen D et al. (2015) Mapping synapses by conjugate light-electron array tomography. J Neurosci 35:5792-807
Ehlen, J Christopher; Jones, Kelly A; Pinckney, Lennisha et al. (2015) Maternal Ube3a Loss Disrupts Sleep Homeostasis But Leaves Circadian Rhythmicity Largely Intact. J Neurosci 35:13587-98
Burette, Alain C; Phend, Kristen D; Burette, Susan et al. (2015) Organization of TNIK in dendritic spines. J Comp Neurol 523:1913-24
Jacob, Amanda L; Weinberg, Richard J (2015) The organization of AMPA receptor subunits at the postsynaptic membrane. Hippocampus 25:798-812

Showing the most recent 10 out of 38 publications