Synapses are fundamental to neuronal communication. As most clearly demonstrated in the CA1 field of rodent hippocampus, synaptic efficacy can vary over time. This synaptic modulation underlies many aspects of higher brain function. Its dysfunction is implicated in developmental disorders and certain types of epilepsy, and may be important for a variety of neuropsychiatric diseases. It is now generally agreed that proteins lying within the postsynaptic density (PSD) play a key role in regulating synaptic efficacy, but the organization of these proteins within the PSD remains largely unknown. Elucidating the supramolecular architecture of the PSD is the long-term goal of this project. Current evidence suggests that each NMDA receptor combines with numerous signaling, adaptor, and cytoskeletal proteins to form individual semi-autonomous signaling """"""""modules,"""""""" but these are now understood only as biochemical abstractions. The proposed research combines immunogold EM with high-resolution electron tomography to study the NMDAR module as an organized physical structure, determining its size and shape, and examining its internal organization. It also explores the organization of these modules into larger domains within the PSD, and investigates the relationship of the PSD to the cytoskeleton.
Specific Aim 1 determines the morphology of NMDAR signaling modules;
Specific Aim 2 elucidates the internal organization of NMDAR modules, using immunogold mapping to characterize the laminar organization of four major proteins within a module;
Specific Aim 3 examines the distribution of NMDAR modules along the synaptic apposition;
and Specific Aim 4 investigates contacts between the PSD and the actin cytoskeleton, and the organization of actin filaments within the spine. This research proposal addresses the physical organization of molecular signaling pathways at synapses in the hippocampus, focusing on proteins associated with an especially important type of neurotransmitter receptor, the NMDA receptor. Successful completion of this work will improve our understanding of synaptic mechanisms in the brain, will provide new clues regarding fundamental processes that underlie learning and memory, and may help understand the causes of a variety of neurological, developmental, and psychiatric disorders.

Agency
National Institute of Health (NIH)
Institute
National Institute of Neurological Disorders and Stroke (NINDS)
Type
Research Project (R01)
Project #
5R01NS039444-09
Application #
7760079
Study Section
Synapses, Cytoskeleton and Trafficking Study Section (SYN)
Program Officer
Talley, Edmund M
Project Start
1999-10-01
Project End
2012-01-31
Budget Start
2010-02-01
Budget End
2012-01-31
Support Year
9
Fiscal Year
2010
Total Cost
$285,781
Indirect Cost
Name
University of North Carolina Chapel Hill
Department
Physiology
Type
Schools of Medicine
DUNS #
608195277
City
Chapel Hill
State
NC
Country
United States
Zip Code
27599
Smith, Katharine R; Jones, Kelly A; Kopeikina, Katherine J et al. (2017) Cadherin-10 Maintains Excitatory/Inhibitory Ratio through Interactions with Synaptic Proteins. J Neurosci 37:11127-11139
Burette, Alain C; Judson, Matthew C; Burette, Susan et al. (2017) Subcellular organization of UBE3A in neurons. J Comp Neurol 525:233-251
Wu, Yumei; Whiteus, Christina; Xu, C Shan et al. (2017) Contacts between the endoplasmic reticulum and other membranes in neurons. Proc Natl Acad Sci U S A 114:E4859-E4867
Xu, C Shan; Hayworth, Kenneth J; Lu, Zhiyuan et al. (2017) Enhanced FIB-SEM systems for large-volume 3D imaging. Elife 6:
Judson, Matthew C; Burette, Alain C; Thaxton, Courtney L et al. (2017) Decreased Axon Caliber Underlies Loss of Fiber Tract Integrity, Disproportional Reductions in White Matter Volume, and Microcephaly in Angelman Syndrome Model Mice. J Neurosci 37:7347-7361
Carstens, Kelly E; Phillips, Mary L; Pozzo-Miller, Lucas et al. (2016) Perineuronal Nets Suppress Plasticity of Excitatory Synapses on CA2 Pyramidal Neurons. J Neurosci 36:6312-20
Uezu, Akiyoshi; Kanak, Daniel J; Bradshaw, Tyler W A et al. (2016) Identification of an elaborate complex mediating postsynaptic inhibition. Science 353:1123-9
Dosemeci, Ayse; Weinberg, Richard J; Reese, Thomas S et al. (2016) The Postsynaptic Density: There Is More than Meets the Eye. Front Synaptic Neurosci 8:23
Judson, Matthew C; Wallace, Michael L; Sidorov, Michael S et al. (2016) GABAergic Neuron-Specific Loss of Ube3a Causes Angelman Syndrome-Like EEG Abnormalities and Enhances Seizure Susceptibility. Neuron 90:56-69
Wang, Xiaoming; Bey, Alexandra L; Katz, Brittany M et al. (2016) Altered mGluR5-Homer scaffolds and corticostriatal connectivity in a Shank3 complete knockout model of autism. Nat Commun 7:11459

Showing the most recent 10 out of 44 publications