Dysregulation of cellular Zn2+ has been tightly linked to neuronal injury in neurodegenerative conditions present in stroke, trauma and epilepsy. Our group first suggested that Zn2+ released from intracellular binding proteins by oxidative and nitrosative stress represents a critical and ubiquitous component in the activation of neuronal cell death processes in these and other neurological disorders. In work performed during the first funding period of this grant, we characterized cell death signaling cascades accompanied by intracellular Zn2+ liberation, and demonstrated in vivo injurious intraneuronal accumulation of this metal in the absence of synaptic Zn2+ release. The completion and publication of nearly all of the originally proposed experiments has allowed us to continue to expand our work in this novel and exciting area of research. In this competitive renewal application we propose: 1) To establish the mechanism by which intracellular Zn2+ release activates specific MAPK-dependent cell death signaling pathways. With these studies, we aim to eventually characterize the process by which Zn2+ can initiate divergent signaling processes. 2) To investigate the factors that modulate Zn2+-regulated neuronal gene expression in order to resolve conditions affecting Zn2+ buffering systems and, ultimately, Zn2+ cellular homeostasis. These studies aim to elucidate the fundamental properties of Zn2+-mediated gene expression in neurons, a relatively unexplored but critically important area of research. And 3) to determine the molecular cell-death pathway activated by intracellular Zn2+ release in vivo and uncover the endogenous stimulus for the liberation of this metal. Our long-term objectives are to characterize in detail the molecular signaling cascades leading to neuronal cell death following the liberation of intracellular Zn2+. As such, results of these studies will likely generate new avenues for therapeutic intervention in the large number of neurodegenerative disorders associated with oxidative and nitrosative injury.

Public Health Relevance

Results from these studies will provide fundamental information about the cellular mechanisms responsible for a host of neurological disorders, including stroke, trauma and epilepsy. With this information, we hope to uncover novel therapeutic strategies to prevent or halt the progression of these and other neurodegenerative conditions.

National Institute of Health (NIH)
National Institute of Neurological Disorders and Stroke (NINDS)
Research Project (R01)
Project #
Application #
Study Section
Neural Oxidative Metabolism and Death Study Section (NOMD)
Program Officer
Gubitz, Amelie
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of Pittsburgh
Schools of Medicine
United States
Zip Code
Shah, Niyathi H; Schulien, Anthony J; Clemens, Katerina et al. (2014) Cyclin e1 regulates Kv2.1 channel phosphorylation and localization in neuronal ischemia. J Neurosci 34:4326-31
Shah, Niyathi Hegde; Aizenman, Elias (2014) Voltage-gated potassium channels at the crossroads of neuronal function, ischemic tolerance, and neurodegeneration. Transl Stroke Res 5:38-58
McCord, Meghan C; Aizenman, Elias (2014) The role of intracellular zinc release in aging, oxidative stress, and Alzheimer's disease. Front Aging Neurosci 6:77
Perez-Rosello, Tamara; Anderson, Charles T; Schopfer, Francisco J et al. (2013) Synaptic Zn2+ inhibits neurotransmitter release by promoting endocannabinoid synthesis. J Neurosci 33:9259-72
Chorin, Ehud; Vinograd, Ofir; Fleidervish, Ilya et al. (2011) Upregulation of KCC2 activity by zinc-mediated neurotransmission via the mZnR/GPR39 receptor. J Neurosci 31:12916-26
Aras, Mandar A; Aizenman, Elias (2011) Redox regulation of intracellular zinc: molecular signaling in the life and death of neurons. Antioxid Redox Signal 15:2249-63
Hershfinkel, Michal; Aizenman, Elias; Andrews, Glen et al. (2010) Zinc bells rang in Jerusalem! Sci Signal 3:mr2
Hershfinkel, Michal; Kandler, Karl; Knoch, Megan E et al. (2009) Intracellular zinc inhibits KCC2 transporter activity. Nat Neurosci 12:725-7
Aras, Mandar A; Hara, Hirokazu; Hartnett, Karen A et al. (2009) Protein kinase C regulation of neuronal zinc signaling mediates survival during preconditioning. J Neurochem 110:106-17
Aras, Mandar A; Saadi, Robert A; Aizenman, Elias (2009) Zn2+ regulates Kv2.1 voltage-dependent gating and localization following ischemia. Eur J Neurosci 30:2250-7

Showing the most recent 10 out of 19 publications