Between 13 and 16% of children born in the United States are born prematurely, with nearly 2% of these weighing less than 1500 g (less than three-quarters of a pound). In this latter group, neurological deficits are observed in nearly 90% of those who survive: cerebral palsy is found in 5-10% and deficits in cognition, behavior, or attention is found in about 50%. In 2005, medical costs during the first year of life averaged $41,610, compared to $2830 for a full term baby, for total annual hospital charges of $7.4 billion. Magnetic resonance imaging is being used increasingly to look at the brains of these babies in order to understand why so many have these developmental abnormalities. Most studies have focused upon injury to the white matter of the cerebral hemispheres, but recent studies have discovered frequent abnormalities of development of the cerebellum, a more posterior part of the brain. The cerebellum has traditionally been associated with motor tone and coordination, and more recently has been implicated in cognitive function. As a result, a component of the adverse outcome from prematurity may relate to abnormal cerebellar development. This study proposes to use state-of-the-art magnetic resonance techniques to assess the metabolism and microstructure of the cerebellum during development in prematurely born neonates and to correlate that development with potentially treatable conditions in other organ systems of the baby and with two common conditions of the brain in prematurely born neonates: hemorrhage into the cerebral ventricles, and injury of the cerebral white matter. It is postulated that hemorrhage into the ventricular system and subarachnoid spaces around the cerebellum prevents the cerebellum from receiving important signals from the tissues that cover it, while injury to the cerebral white matter might interfere with signals sent to the cerebellum, thus contributing to cerebellar injury of the premature brain. Identification of the causative factors might allow those factors to be avoided or treated more aggressively, ultimately resulting in less cerebellar damage and improved clinical outcome.

Public Health Relevance

Brain injuries in prematurely born babies enormously increase the costs of health care during the first year of life. In addition, the poor neurodevelopmental outcome that results in poor school performance, and behavioral performance that results in decreased productivity of affected patients after childhood. This study aims to identify causes and, in that way, reduce the incidence of these injuries.

Agency
National Institute of Health (NIH)
Institute
National Institute of Neurological Disorders and Stroke (NINDS)
Type
Research Project (R01)
Project #
5R01NS046432-07
Application #
8132424
Study Section
Developmental Brain Disorders Study Section (DBD)
Program Officer
Babcock, Debra J
Project Start
2003-07-01
Project End
2014-08-31
Budget Start
2011-09-01
Budget End
2012-08-31
Support Year
7
Fiscal Year
2011
Total Cost
$515,449
Indirect Cost
Name
University of California San Francisco
Department
Radiation-Diagnostic/Oncology
Type
Schools of Medicine
DUNS #
094878337
City
San Francisco
State
CA
Country
United States
Zip Code
94143
Kamino, Daphne; Studholme, Colin; Liu, Mengyuan et al. (2018) Postnatal polyunsaturated fatty acids associated with larger preterm brain tissue volumes and better outcomes. Pediatr Res 83:93-101
Barkovich, Matthew J; Xu, Duan; Desikan, Rahul S et al. (2018) Pediatric neuro MRI: tricks to minimize sedation. Pediatr Radiol 48:50-55
Cui, J; Tymofiyeva, O; Desikan, R et al. (2017) Microstructure of the Default Mode Network in Preterm Infants. AJNR Am J Neuroradiol 38:343-348
Kim, Hosung; Lepage, Claude; Maheshwary, Romir et al. (2016) NEOCIVET: Towards accurate morphometry of neonatal gyrification and clinical applications in preterm newborns. Neuroimage 138:28-42
Kansagra, Akash P; Mabray, Marc C; Ferriero, Donna M et al. (2016) Microstructural maturation of white matter tracts in encephalopathic neonates. Clin Imaging 40:1009-13
Kim, Hosung; Joo, EunYeon; Suh, Sooyeon et al. (2016) Effects of long-term treatment on brain volume in patients with obstructive sleep apnea syndrome. Hum Brain Mapp 37:395-409
Kim, Hosung; Gano, Dawn; Ho, Mai-Lan et al. (2016) Hindbrain regional growth in preterm newborns and its impairment in relation to brain injury. Hum Brain Mapp 37:678-88
Tam, Emily W Y; Chau, Vann; Barkovich, A James et al. (2016) Early postnatal docosahexaenoic acid levels and improved preterm brain development. Pediatr Res 79:723-30
Gano, Dawn; Ho, Mai-Lan; Partridge, John Colin et al. (2016) Antenatal Exposure to Magnesium Sulfate Is Associated with Reduced Cerebellar Hemorrhage in Preterm Newborns. J Pediatr 178:68-74
Ranasinghe, Sumudu; Or, Grace; Wang, Eric Y et al. (2015) Reduced Cortical Activity Impairs Development and Plasticity after Neonatal Hypoxia Ischemia. J Neurosci 35:11946-59

Showing the most recent 10 out of 39 publications