Traumatic brain injury (TBI) is associated with long-term deficit in cognitive abilities and elevated risk for psychiatric disorders. The pathology of TBI is very complex involving multiple cascades of molecular and cellular events, which are difficult to target with pharmacological therapies that are too confined. An overlooked aspect of TBI is damage to plasma membranes, which may reduce neuronal excitability and interneuronal signaling, thereby affecting fundamental mechanisms required for processing and storage of information. In turn, the dysfunction in energy management resulting from TBI imposes a heavy toll on the multitude of neuronal processes that rely on energy, and can affect membrane structure and function. Abundant evidence in the human literature emphasizes the importance of dietary omega-3 fatty acids to reduce the incidence of psychiatric disorders. According to our studies, the benevolent action of DHA on rodent TBI seems related to supporting membrane stability. In turn, the curry spice curcumin, traditionally known in Asia for its medicinal power, has been shown in our hands to promote energy homeostasis and reduce the learning impairment after TBI. In addition, our new preliminary data point out the capacities of DHA and curcumin to attenuate anxiety- like behaviors. Although exercise is an excellent therapy to promote cognitive and emotional enhancement across several conditions and ages, its deployment after TBI requires optimization. Our strategy involves the use of the intrinsic capacity of the omega-3 fatty acid DHA to support plasma membranes, and the power of curcumin to support energy metabolism. We expect that this dietary therapy can contribute to the effects of exercise after TBI, and can have long-term consequences for mechanisms responsible for maintaining higher order operations such as learning and memory, and emotions. We will use a rodent model of concussion injury to evaluate crucial mechanisms that can restore membrane function, and assess their effects on reducing anxiety-like behaviors and cognition. Our comprehensive approach based on noninvasive interventions to promote neuronal stability and mental health after TBI has an outstanding safety profile, and information derived from these studies can be readily translatable into human treatments.

Public Health Relevance

We will pursue studies to understand how dietary factors can complement the action of exercise to reduce the consequences of TBI. TBI disrupts molecular systems that maintain membrane function and synaptic plasticity. Our design relies on the powerful action of select dietary factors and exercise to modulate membrane physiology, synaptic function, and to enhance cognitive abilities.

National Institute of Health (NIH)
National Institute of Neurological Disorders and Stroke (NINDS)
Research Project (R01)
Project #
Application #
Study Section
Acute Neural Injury and Epilepsy Study Section (ANIE)
Program Officer
Hicks, Ramona R
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of California Los Angeles
Schools of Arts and Sciences
Los Angeles
United States
Zip Code
Yoon, Hyesook; Kleven, Andrew; Paulsen, Alex et al. (2016) Interplay between exercise and dietary fat modulates myelinogenesis in the central nervous system. Biochim Biophys Acta 1862:545-55
Agrawal, Rahul; Noble, Emily; Vergnes, Laurent et al. (2016) Dietary fructose aggravates the pathobiology of traumatic brain injury by influencing energy homeostasis and plasticity. J Cereb Blood Flow Metab 36:941-53
Tyagi, Ethika; Zhuang, Yumei; Agrawal, Rahul et al. (2015) Interactive actions of Bdnf methylation and cell metabolism for building neural resilience under the influence of diet. Neurobiol Dis 73:307-18
Agrawal, Rahul; Noble, Emily; Tyagi, Ethika et al. (2015) Flavonoid derivative 7,8-DHF attenuates TBI pathology via TrkB activation. Biochim Biophys Acta 1852:862-72
Wu, Aiguo; Noble, Emily E; Tyagi, Ethika et al. (2015) Curcumin boosts DHA in the brain: Implications for the prevention of anxiety disorders. Biochim Biophys Acta 1852:951-61
Agrawal, Rahul; Zhuang, Yumei; Cummings, Bethany P et al. (2014) Deterioration of plasticity and metabolic homeostasis in the brain of the UCD-T2DM rat model of naturally occurring type-2 diabetes. Biochim Biophys Acta 1842:1313-23
Tyagi, Ethika; Agrawal, Rahul; Ying, Zhe et al. (2014) TBI and sex: crucial role of progesterone protecting the brain in an omega-3 deficient condition. Exp Neurol 253:41-51
Wu, A; Ying, Z; Gomez-Pinilla, F (2013) Exercise facilitates the action of dietary DHA on functional recovery after brain trauma. Neuroscience 248:655-63
Gomez-Pinilla, Fernando; Hillman, Charles (2013) The influence of exercise on cognitive abilities. Compr Physiol 3:403-28
Baruch, Kuti; Ron-Harel, Noga; Gal, Hilah et al. (2013) CNS-specific immunity at the choroid plexus shifts toward destructive Th2 inflammation in brain aging. Proc Natl Acad Sci U S A 110:2264-9

Showing the most recent 10 out of 35 publications